Linear Complexity Self-Attention With 3rd Order Polynomials
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we evaluate the results of using inter and intra attention mechanisms from two architectures, a Deep Attention Long Short-Term Memory-Network (LSTM-N) (Cheng et al., 2016) and a Decomposable Attention model (Parikh et al., 2016), for anaphor ...
The polynomial time algorithm of Lenstra, Lenstra, and Lovász [15] for factoring integer polynomials and variants thereof have been widely used to show that various computational problems in number theory have polynomial time solutions. Among them is the p ...
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
In this work, we study the use of attention mechanisms to enhance the performance of the state-of-the-art deep learning model in Speech Emotion Recognition (SER). We introduce a new Long Short-Term Memory (LSTM)-based neural network attention model which i ...
Several recent works have shown that state-of-the-art classifiers are vulnerable to worst-case (i.e., adversarial) perturbations of the datapoints. On the other hand, it has been empirically observed that these same classifiers are relatively robust to ran ...
We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification ...
In the past decade, image classification systems have witnessed major advances that led to record performances on challenging datasets. However, little is known about the behavior of these classifiers when the data is subject to perturbations, such as rand ...
The goal of the scene labeling task is to assign a class label to each pixel in an image. To ensure a good visual coherence and a high class accu- racy, it is essential for a model to capture long range (pixel) label dependencies in images. In a feed-forwa ...