Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The age-related loss of skeletal muscle function starts from midlife and if left unaddressed can lead to an impaired quality of life. A growing body of evidence indicates that mitochondrial dysfunction is causally involved with muscle aging. Muscles are tissues with high metabolic requirements, and contain rich mitochondria supply to support their continual energy needs. Cellular mitochondrial health is maintained by expansing of the mitochondrial pool though mitochondrial biogenesis, by preserving the natural mitochondrial dynamic process, via fusion and fission, and by ensuring the removal of damaged mitochondria through mitophagy. During aging, mitophagy levels decline and negatively impact skeletal muscle performance. Nutritional and pharmacological approaches have been proposed to manage the decline in muscle function due to impaired mitochondria bioenergetics. The natural postbiotic Urolithin A has been shown to promote mitophagy, mitochondrial function and improved muscle function across species in different experimental models and across multiple clinical studies. In this review, we explore the biology of Urolithin A and the clinical evidence of its impact on promoting healthy skeletal muscles during age-associated muscle decline.
Johan Auwerx, Davide D'Amico, Qi Wang, Sébastien Robert Victor Herzig, Maroun Bou Sleiman, Martin Rainer Wohlwend, Peiling Luan, Pirkka-Pekka Untamo Laurila, Barbara Moreira Crisol
Johan Auwerx, Xiaoxu Li, Mario Romani, Tanes Imamura de Lima, Sandra Rodriguez Lopez, Jean-David Horacio Morel, Hao Li, Martin Rainer Wohlwend, Pirkka-Pekka Untamo Laurila, Ludger Jan Elzuë Goeminne, Barbara Moreira Crisol, Changmyung Oh, Dohyun Park