Outlier-free spline spaces for isogeometric discretizations of biharmonic and polyharmonic eigenvalue problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We complete the picture of sharp eigenvalue estimates for the -Laplacian on a compact manifold by providing sharp estimates on the first nonzero eigenvalue of the nonlinear operator when the Ricci curvature is bounded from below by a negative constant. We ...
We establish exponential convergence of the hp-version of isogeometric analysis for second order elliptic problems in one spacial dimension. Specifically, we construct, for functions which are piecewise analytic with a finite number of algebraic singularit ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
In this paper, we propose a novel preconditioned solver for generalized Hermitian eigenvalue problems. More specifically, we address the case of a definite matrix pencil , that is, A, B are Hermitian and there is a shift such that is definite. Our new meth ...
This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix-valued function is computationally expensive. ...
This work presents a new methodology for computing ground states of Bose-Einstein condensates based on finite element discretizations on two different scales of numerical resolution. In a preprocessing step, a low-dimensional (coarse) generalized finite el ...
Society for Industrial and Applied Mathematics2014
We consider the solution of large-scale symmetric eigenvalue problems for which it is known that the eigenvectors admit a low-rank tensor approximation. Such problems arise, for example, from the discretization of high-dimensional elliptic PDE eigenvalue p ...
We study a class of models at the interface between statistics and numerical analysis. Specifically, we consider nonparametric regression models for the estimation of spatial fields from pointwise and noisy observations, which account for problem-specific ...
We consider the distance from a (square or rectangular) matrix pencil to the nearest matrix pencil in 2-norm that has a set of specified eigenvalues. We derive a singular value optimization characterization for this problem and illustrate its usefulness fo ...
The objective of this PhD thesis is the approximate computation of the solutions of the Spectral Problem associated with the Laplace operator on a compact Riemann surface without boundaries. A Riemann surface can be seen as a gluing of portions of the Hype ...