**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation

Abstract

In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation function to statistically obfuscate the presence of a single edge (edge-level privacy) or a single node and all its adjacent edges (node-level privacy). Tailored to the specifics of private learning, GAP's new architecture is composed of three separate modules: (i) the encoder module, where we learn private node embeddings without relying on the edge information; (ii) the aggregation module, where we compute noisy aggregated node embeddings based on the graph structure; and (iii) the classification module, where we train a neural network on the private aggregations for node classification without further querying the graph edges. GAP's major advantage over previous approaches is that it can benefit from multi-hop neighborhood aggregations, and guarantees both edge-level and node-level DP not only for training, but also at inference with no additional costs beyond the training's privacy budget. We analyze GAP's formal privacy guarantees using Renyi DP and conduct empirical experiments over three real-world graph datasets. We demonstrate that GAP offers significantly better accuracy-privacy trade-offs than state-of-the-art DP-GNN approaches and naive MLP-based baselines. Our code is publicly available at https://github.com/sisaman/GAP.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (35)

Related publications (71)

Related MOOCs (29)

Ontological neighbourhood

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.

A recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...

Pierre Vandergheynst, Felix Naef, Cédric Gobet, Francesco Craighero, Mohan Vamsi Nallapareddy

Translation elongation plays an important role in regulating protein concentrations in the cell, and dysregulation of this process has been linked to several human diseases. In this study, we use data from ribo-seq experiments to model ribosome dwell times ...

2024