Parallel computingParallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Subspace topologyIn topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology (or the relative topology, or the induced topology, or the trace topology). Given a topological space and a subset of , the subspace topology on is defined by That is, a subset of is open in the subspace topology if and only if it is the intersection of with an open set in .
Temporal difference learningTemporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods, and perform updates based on current estimates, like dynamic programming methods. While Monte Carlo methods only adjust their estimates once the final outcome is known, TD methods adjust predictions to match later, more accurate, predictions about the future before the final outcome is known.
Bayesian optimizationBayesian optimization is a sequential design strategy for global optimization of black-box functions that does not assume any functional forms. It is usually employed to optimize expensive-to-evaluate functions. The term is generally attributed to Jonas Mockus and is coined in his work from a series of publications on global optimization in the 1970s and 1980s. Bayesian optimization is typically used on problems of the form , where is a set of points, , which rely upon less than 20 dimensions (), and whose membership can easily be evaluated.