**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# High-order accurate entropy stable adaptive moving mesh finite difference schemes for (multi-component) compressible Euler equations with the stiffened equation of state

Abstract

This paper extends the high-order entropy stable (ES) adaptive moving mesh finite difference schemes developed in Duan and Tang (2022) to the two- and three-dimensional (multi-component) compressible Euler equations with the stiffened equation of state (EOS). The two-point entropy conservative (EC) flux is first constructed in the curvilinear coordinates, which is nontrivial in the case of the stiffened EOS. With the aid of the high-order discretization of the geometric conservation laws and the linear combinations of the two-point EC fluxes, the high-order semi-discrete EC schemes are derived. The high-order semi-discrete ES schemes are constructed by adding suitable high-order dissipation term to the EC schemes such that the semi-discrete entropy inequality is satisfied and unphysical oscillations are suppressed. The high-order dissipation term is built on the multi-resolution weighted essentially non-oscillatory (WENO) reconstruction and the newly derived scaled eigenvector matrices. The explicit strong-stability-preserving Runge-Kutta methods are used for the time discretization and the mesh points are adaptively redistributed by iteratively solving the mesh redistribution equations with an appropriate monitor function, which is adapted to the multi-component flow and encodes more physical characteristics of the solutions. Several 2D and 3D numerical tests are conducted on the parallel computer system with the MPI programming to validate the accuracy and the ability to effectively capture the localized structures of the proposed schemes. (c) 2022 Elsevier B.V. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (32)

Related MOOCs (7)

Related concepts (32)

Ontological neighbourhood

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Euler equations (fluid dynamics)

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity. The Euler equations can be applied to incompressible or compressible flow. The incompressible Euler equations consist of Cauchy equations for conservation of mass and balance of momentum, together with the incompressibility condition that the flow velocity is a solenoidal field.

Large eddy simulation

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer. The simulation of turbulent flows by numerically solving the Navier–Stokes equations requires resolving a very wide range of time and length scales, all of which affect the flow field.

Navier–Stokes equations

The Navier–Stokes equations (nævˈjeː_stəʊks ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes). The Navier–Stokes equations mathematically express momentum balance and conservation of mass for Newtonian fluids.

This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate ...

To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...

2023Jan Sickmann Hesthaven, Deep Ray

Neural networks are increasingly used in complex (data-driven) simulations as surrogates or for accelerating the computation of classical surrogates. In many applications physical constraints, such as mass or energy conservation, must be satisfied to obtai ...