SensorA sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends the information to other electronics, frequently a computer processor. Sensors are used in everyday objects such as touch-sensitive elevator buttons (tactile sensor) and lamps which dim or brighten by touching the base, and in innumerable applications of which most people are never aware.
PiezoelectricityPiezoelectricity (ˌpiːzoʊ-,_ˌpiːtsoʊ-,_paɪˌiːzoʊ-, piˌeɪzoʊ-,_piˌeɪtsoʊ-) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived (an ancient source of electric current). The piezoelectric effect results from the linear electromechanical interaction between the mechanical and electrical states in crystalline materials with no inversion symmetry.
Carbon nanotubeA carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometer range (nanoscale). They are one of the allotropes of carbon. Single-walled carbon nanotubes (SWCNTs) have diameters around 0.5–2.0 nanometers, about 100,000 times smaller than the width of a human hair. They can be idealized as cutouts from a two-dimensional graphene sheet rolled up to form a hollow cylinder. Multi-walled carbon nanotubes (MWCNTs) consist of nested single-wall carbon nanotubes in a nested, tube-in-tube structure.
Materials scienceMaterials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials science stem from the Age of Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering.
Graphene oxide paperGraphene oxide paper or graphite oxide paper is a material fabricated from graphite oxide. Micrometer thick films of graphene oxide paper are also named as graphite oxide membranes (in the 1960s) or (more recently) graphene oxide membranes. The membranes are typically obtained by slow evaporation of graphene oxide solution or by the filtration method. The material has exceptional stiffness and strength, due to the intrinsic strength of the two-dimensional graphene backbone and to its interwoven layer structure which distributes loads.
Impedance analogyThe impedance analogy is a method of representing a mechanical system by an analogous electrical system. The advantage of doing this is that there is a large body of theory and analysis techniques concerning complex electrical systems, especially in the field of filters. By converting to an electrical representation, these tools in the electrical domain can be directly applied to a mechanical system without modification.
TransducerA transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities (energy, force, torque, light, motion, position, etc.). The process of converting one form of energy to another is known as transduction.
Spring (device)A spring is a device consisting of an elastic but largely rigid material (typically metal) bent or molded into a form (especially a coil) that can return into shape after being compressed or extended. Springs can store energy when compressed. In everyday use the term often refers to coil springs, but there are many different spring designs. Modern springs are typically manufactured from spring steel. An example of a non-metallic spring is the bow, made traditionally of flexible yew wood, which when drawn stores energy to propel an arrow.
SuperlubricityIn physics (specifically tribology), superlubricity is a regime of motion in which friction vanishes or very nearly vanishes. What is a "vanishing" friction level is not clear, which makes the term quite vague. As an ad hoc definition, a kinetic coefficient of friction less than 0.01 can be adopted. This definition also requires further discussion and clarification. Superlubricity may occur when two crystalline surfaces slide over each other in dry incommensurate contact.
MEMSMEMS (Microelectromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres to a millimetre (i.e., 0.02 to 1.0 mm), although components arranged in arrays (e.g., digital micromirror devices) can be more than 1000 mm2.