Stochastic adaptive resampling for the estimation of discrete choice models
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
We study the performance of Stochastic Cubic Regularized Newton (SCRN) on a class of functions satisfying gradient dominance property with 1≤α≤2 which holds in a wide range of applications in machine learning and signal processing. This conditio ...
Reaction optimization is challenging and traditionally delegated to domain experts who iteratively pro-pose increasingly optimal experiments. Problematically, the reaction landscape is complex and often requires hundreds of experiments to reach convergence ...
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
EPFL2023
,
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
This work aims to study the effects of wind uncertainties in civil engineering structural design. Optimising the design of a structure for safety or operability without factoring in these uncertainties can result in a design that is not robust to these per ...
Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We ...
Estimation of causal effects using machine learning methods has become an active research field in econometrics. In this paper, we study the finite sample performance of meta-learners for estimation of heterogeneous treatment effects under the usage of sam ...
Data-driven and model-driven methodologies can be regarded as competitive fields since they tackle similar problems such as prediction. However, these two fields can learn from each other to improve themselves. Indeed, data-driven methodologies have been d ...
Variance-reduced gradient estimators for policy gradient methods have been one of the main focus of research in the reinforcement learning in recent years as they allow acceleration of the estimation process. We propose a variance-reduced policy-gradient m ...