Predicting the long-term collective behaviour of fish pairs with deep learning
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The collective behaviour of stochastic multi-agents swarms driven by Gaussian and non-Gaussian environments is analytically discussed in a mean-field approach. We first exogenously implement long range mutual interactions rules with strengths that are weig ...
Group-living organisms that collectively migrate range from cells and bacteria to human crowds, and include swarms of insects, schools of fish, and flocks of birds or ungulates. Unveiling the behavioural and cognitive mechanisms by which these groups coord ...
A fully-labelled dataset of Arabic Sign Language (ArSL) images is developed for research related to sign language recognition. The dataset will provide researcher the opportunity to investigate and develop automated systems for the deaf and hard of hearing ...
In this paper, we propose a novel Deep Micro-Dictionary Learning and Coding Network (DDLCN). DDLCN has most of the standard deep learning layers (pooling, fully, connected, input/output, etc.) but the main difference is that the fundamental convolutional l ...
We study the problem of landuse characterization at the urban-object level using deep learning algorithms. Traditionally, this task is performed by surveys or manual photo interpretation, which are expensive and difficult to update regularly. We seek to ch ...
We tackle unsupervised domain adaptation by accounting for the fact that different domains may need to be processed differently to arrive to a common feature representation effective for recognition. To this end, we introduce a deep learning framework wher ...
Identifying nuclei is often a critical first step in analyzing microscopy images of cells and classical image processing algorithms are most commonly used for this task. Recent developments in deep learning can yield superior accuracy, but typical evaluati ...
In this paper we study the properties of the quenched pressure of a multi-layer spin-glass model (a deep Boltzmann Machine in artificial intelligence jargon) whose pairwise interactions are allowed between spins lying in adjacent layers and not inside the ...
Removing reflection artefacts from a single image is a problem of both theoretical and practical interest, which still presents challenges because of the massively ill-posed nature of the problem. In this paper, we propose a technique based on a novel opti ...
Situational awareness by Unmanned Aerial Vehicles (UAVs) is important for many applications such as surveillance, search and rescue, and disaster response. In those applications, detecting and locating people and recognizing their actions in near real-time ...