Publication

Reuse of cut concrete slabs in new buildings for circular ultra-low-carbon floor designs

Abstract

The study explores an original idea that responds to the urgent need to reduce the detrimental environmental impacts of load-bearing floor construction in new buildings by reusing saw-cut reinforced concrete (RC) pieces salvaged from soon-to-be demolished structures. Cutting and reusing large RC pieces rather than crushing them to rubble is an untapped emerging circular construction method with a high potential for reducing waste generation, natural resource consumption, and upfront greenhouse gas emissions. Through an iterative design and analytical process, the study demonstrates how discarded cast-in-place RC floors can be cut and reused to build new low-carbon, little-extractive, load-bearing building floors. The study provides two new floor design solutions that valorise frequently discarded construction components (reinforced concrete slabs and steel profiles), combining construction technologies already used by the industry. The parametric design of 20′280 combinations of donor and receiver structures and their environmental analysis through Life-Cycle Assessment show that the new floor systems have shallow detrimental environmental impacts, with a reduction of upfront greenhouse gas emissions averaging 80 % compared to conventional practice. Floor-system solutions as low as 5 kgCO2e/m2 have been obtained. Structural assessments additionally show that flat slabs that are currently demolished meet the structural requirements at the preliminary design stage for reuse in new office or housing buildings. In particular, thanks to mandatory minimum reinforcement, 18-cm thick or thicker flat slabs built in Switzerland after 1956 and spanning up to 4 m are expected to be technically reusable as-is over their entire span. Overall, this study sets up a new benchmark for innovative floor systems with minimum environmental impacts and calls for considering soon-to-be demolished RC structures as mines of valuable construction components.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Concrete slab
A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel-reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving . In many domestic and industrial buildings, a thick concrete slab supported on foundations or directly on the subsoil, is used to construct the ground floor. These slabs are generally classified as ground-bearing or suspended.
Reinforced concrete
Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials.
Environmental impact assessment
Environmental Impact assessment (EIA) is the assessment of the environmental consequences of a plan, policy, program, or actual projects prior to the decision to move forward with the proposed action. In this context, the term "environmental impact assessment" is usually used when applied to actual projects by individuals or companies and the term "strategic environmental assessment" (SEA) applies to policies, plans and programmes most often proposed by organs of state.
Show more
Related publications (33)

Mesh-based topology, shape and sizing optimization of ribbed plates

In this paper, we present a new parameterization and optimization procedure for minimizing the weight of ribbed plates. The primary goal is to reduce embodied CO2 in concrete floors as part of the effort to diminish the carbon footprint of the construction ...
Springer2024

FLO:RE – A new floor system made of reused reinforced concrete and steel elements

Corentin Jean Dominique Fivet, Maléna Bastien Masse, Célia Marine Küpfer, Numa Joy Bertola

Carefully extracting reinforced concrete (RC) elements from soon-to-be demolished structures and reusing them as load-bearing components is an emerging circular low-carbon alternative to building new structures. As floor construction typically accounts for ...
IABSE2024

A concrete answer for circular construction: three prototypes reusing saw-cut elements

Corentin Jean Dominique Fivet, Maléna Bastien Masse, Célia Marine Küpfer

Existing concrete buildings should be retained for as long as possible to reduce the environmental burden of demolition and new construction. However, when urban pressure makes demolition unavoidable, salvaging and reusing concrete elements elsewhere in ne ...
2024
Show more
Related MOOCs (7)
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.