Publication

Non-invasive neuromodulation of the right temporoparietal junction using theta-burst stimulation in functional neurological disorder

Serafeim Loukas
2024
Journal paper
Abstract

Background Disrupted sense of agency (SoA)-the sense of being the agent of one's own actions-has been demonstrated in patients with functional neurological disorder (FND), and a key area of the corresponding neuronal network is the right temporoparietal junction (rTPJ). Several functional MRI (fMRI) studies have found hypoactivation as well as hyperactivation of the rTPJ in FND. In a proof-of-concept study, we tested whether repetitive transcranial magnetic stimulation (rTMS) over the rTPJ could restore this aberrant activity. Methods In a randomised, crossover, single-blinded, sham-controlled study design, theta-burst stimulation (tb-rTMS) was applied over the rTPJ in 23 patients with FND and 19 healthy controls (HC), with each participant undergoing three stimulatory visits (inhibitory continuous TBS (cTBS), excitatory intermittent TBS (iTBS) and sham). During fMRI, participants played a visuomotor task artificially reducing their SoA (manipulated agency, MA), repeated after each neurostimulation. We compared brain activity and behavioural SoA as primary outcomes before and after tb-rTMS and investigated the feasibility of tb-rTMS over the rTPJ in FND as secondary outcome. Results At baseline, patients showed decreased accuracy in detecting reduced agency compared with controls (p

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Transcranial magnetic stimulation
Transcranial magnetic stimulation (TMS) is a noninvasive form of brain stimulation in which a changing magnetic field is used to induce an electric current at a specific area of the brain through electromagnetic induction. An electric pulse generator, or stimulator, is connected to a magnetic coil connected to the scalp. The stimulator generates a changing electric current within the coil which creates a varying magnetic field, inducing a current within a region in the brain itself.
Transcranial direct-current stimulation
Transcranial direct current stimulation (tDCS) is a form of neuromodulation that uses constant, low direct current delivered via electrodes on the head. It was originally developed to help patients with brain injuries or neuropsychiatric conditions such as major depressive disorder. It can be contrasted with cranial electrotherapy stimulation, which generally uses alternating current the same way, as well as transcranial magnetic stimulation. Research shows increasing evidence for tDCS as a treatment for depression.
Placebo
A placebo (pləˈsiːboʊ ) is a substance or treatment which is designed to have no therapeutic value. Common placebos include inert tablets (like sugar pills), inert injections (like saline), sham surgery, and other procedures. In general, placebos can affect how patients perceive their condition and encourage the body's chemical processes for relieving pain and a few other symptoms, but have no impact on the disease itself.
Show more
Related publications (33)

Efficacy and safety of transcranial direct current stimulation to the ipsilesional motor cortex in subacute stroke (NETS): a multicenter, randomized, double-blind, placebo-controlled trial

Friedhelm Christoph Hummel

Background Each year, five million people are left disabled after stroke. Upper -extremity (UE) dysfunction is a leading problem. Neuroplasticity can be enhanced by non-invasive brain stimulation (NIBS) but evidence from large, randomized multicenter trial ...
Elsevier2024

Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills

Friedhelm Christoph Hummel, Takuya Morishita, Pierre Theopistos Vassiliadis, Elena Beanato, Esra Neufeld, Fabienne Windel, Maximilian Jonas Wessel, Traian Popa, Julie Duqué

Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, ...
Nature Portfolio2024

Biophysically accurate and machine learning-based surrogate models to optimize neuroprosthesis design and operation

Simone Romeni

Electrical stimulation of the nervous system has emerged as a promising assistive technology in case of many injuries and illnesses across various parts of the nervous system. In particular, the invasive neuromodulation of the peripheral nervous system see ...
EPFL2024
Show more
Related MOOCs (24)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.