Implementation of the ISORROPIA-lite aerosol thermodynamics model into the EMAC chemistry climate model (based on MESSy v2.55): implications for aerosol composition and acidity
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and ...
Meteorological conditions, gas-phase precursors, and aerosol acidity (pH) can influence the formation of secondary inorganic aerosols (SIA) in fine particulate matter (PM2.5). Most works related to the influence of pH and gas-phase precursors on SIA have b ...
Previous research on the direct effect of atmospheric aerosols on climate has estimated the average radiative forcing per unit sulfate mass, and has used this average to calculate the magnitude and spatial distribution of sulfate forcing. In this paper, we ...
A new aerosol model, the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been developed to simulate atmospheric particulate matter (PM). MADRID and the Carnegie-Mellon University (CMU) bulk aqueous-phase chemistry have been in ...