Can Gas Consumption Data Improve the Performance of Electricity Theft Detection?
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The objective of this research work is to compare the environmental impact, expressed in terms of non-renewable cumulative energy demand (CEDnr) and greenhouse gas (GHG) emissions, of nine architectural visions for a new neighbourhood located in the periur ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.Althou ...
Metal-based Laser Powder Bed Fusion (LPBF) has made fabricating intricate components easier. Yet, assessing part quality is inefficient, relying on costly Computed Tomography (CT) scans or time-consuming destructive tests. Also, intermittent inspection of ...
Discovering new materials is essential but challenging, time-consuming, and expensive.In many cases, simulations can be useful for estimating material properties. For many of the most interesting properties, however, simulations are infeasible because of p ...
Rationale: Given the expanding number of COVID-19 cases and the potential for new waves of infection, there is an urgent need for early prediction of the severity of the disease in intensive care unit (ICU) patients to optimize treatment strategies.Objecti ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
Despite the large body of academic work on machine learning security, little is known about the occurrence of attacks on machine learning systems in the wild. In this paper, we report on a quantitative study with 139 industrial practitioners. We analyze at ...
Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does n ...
Machine learning models trained with passive sensor data from mobile devices can be used to perform various inferences pertaining to activity recognition, context awareness, and health and well-being. Prior work has improved inference performance through t ...
Algorithms are everywhere.The recipe for the frangipane cake is an algorithm.If all the listed ingredients are available and the cook is sufficiently deft, after a finite number of small, well-defined steps a delicious dessert will exit the oven.Now, what ...