Publication

Heterogeneous catalysis via light-heat dual activation: A path to the breakthrough in C1 chemistry

Bingqiao Xie
2024
Journal paper
Abstract

A hybrid photothermal catalytic system, which combines both the photochemical (light) and thermal (heat) activation pathways over a bifunctional catalyst, has demonstrated remarkable levels of reaction activity and selectivity when compared with individual photocatalysis and thermocatalysis. However, the complex nature of the hybrid system, coupled with the synergy between photocatalysis and thermocatalysis, has made it challenging to understand (and thus manipulate) the role of individual stimuli (light/heat) and catalyst surface processes. In this perspective, a systematic classification for different (complicated) photothermal catalysis reaction systems is provided. We evaluate the singular catalytic characteristics of each category, together with the competence of light-heat dual activation in overcoming the well-defined limitations in photocatalysis and thermocatalysis, mainly in the scope of C1 chemistry. Notably, the interplay and cooperation among heat and/or light-induced effects can be engineered to greatly extend the capability of chemical transformation (i.e., product selectivity and reactivity) via the well-established photo-thermo cascade reaction. Finally, we provide critical insights into the catalyst development and reactor design for high-performance lightheat-coupled catalytic systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.