Information-theoretic securityA cryptosystem is considered to have information-theoretic security (also called unconditional security) if the system is secure against adversaries with unlimited computing resources and time. In contrast, a system which depends on the computational cost of cryptanalysis to be secure (and thus can be broken by an attack with unlimited computation) is called computationally, or conditionally, secure. An encryption protocol with information-theoretic security is impossible to break even with infinite computational power.
Gaussian noiseIn signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). In other words, the values that the noise can take are Gaussian-distributed. The probability density function of a Gaussian random variable is given by: where represents the grey level, the mean grey value and its standard deviation.
Network monitoringNetwork monitoring is the use of a system that constantly monitors a computer network for slow or failing components and that notifies the network administrator (via email, SMS or other alarms) in case of outages or other trouble. Network monitoring is part of network management. While an intrusion detection system monitors a network threats from the outside, a network monitoring system monitors the network for problems caused by overloaded or crashed servers, network connections or other devices.
Divergence theoremIn vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region inside the surface.