Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Revision behavior in adaptive writing support systems is an important and relatively new area of research that can improve the design and effectiveness of these tools, and promote students' self-regulated learning (SRL). Understanding how these tools are used is key to improving them to better support learners in their writing and learning processes. In this paper, we present a novel pipeline with insights into the revision behavior of students at scale. We leverage a data set of two groups using an adaptive writing support tool in an educational setting. With our novel pipeline, we show that the tool was effective in promoting revision among the learners. Depending on the writing feedback, we were able to analyze different strategies of learners when revising their texts, we found that users of the exemplary case improved over time and that females tend to be more efficient. Our research contributes a pipeline for measuring SRL behaviors at scale in writing tasks (i.e., engagement or revision behavior) and informs the design of future adaptive writing support systems for education, with the goal of enhancing their effectiveness in supporting student writing. The source code is available at https://github.com/lucamouchel/Understanding-Revision-Behavior.
Pierre Dillenbourg, Daniel Carnieto Tozadore, Chenyang Wang, Barbara Bruno
Pierre Dillenbourg, Barbara Bruno, Aditi Kothiyal, Sina Shahmoradi