Publication

Tailoring nanocatalysts and reaction interfaces for water- and CO2-electrolysis

Thi Ha My Pham
2024
EPFL thesis
Abstract

Renewable energy sources offer a promising solution for mitigating sustainability and CO2 emissions-related issues due to their vast energy generation capacity. They enable hydrogen production via water electrolysis, as well as carbon capture and utilization techniques, leading to negative carbon emissions. However, these solutions rely on electrochemical reactions such as water- and CO2-electrolysis, with the anodic oxygen evolution reaction (OER) and the cathodic CO2 reduction reaction (CO2RR), which suffer from high overpotentials and limited efficiencies. Thus, the development of catalysts to enhance the activity and stability of these reactions is imperative for their practical application. The primary challenge of OER research is the development of cost-effective catalysts to replace expensive benchmark materials. Additionally, the challenge of enabling CO2 reduction in aqueous environments is mainly the low CO2 efficiency and uncontrolled product selectivity. Copper-based materials have become the focus of extensive research due to their unique ability to convert CO2 into multi-carbon (C2+) compounds, requiring further investigations for a better understanding of their catalytic properties.This thesis describes a comprehensive study aimed at developing catalysts with improved activities and stabilities, as well as promoting their selectivity for specific targeted products. Furthermore, we conducted an in-depth study of the structure of the catalyst and attempted to determine the underlying mechanisms responsible for these improvements. First, we explored the role of surface oxygen functionalization on the dispersion and activity of Co-based catalysts in the context of OER. We found that carbon supports rich in acidic oxygen-containing functional groups enhanced the adsorption of metal cations and the dispersion of the catalysts.Second, we studied how the incorporation of Fe impacts the OER activity of Co-based catalysts. Through in situ synthesis, we found that Fe is incorporated as a solid solution, primarily through the substitution of Fe3+ at Co3+ sites. Our CoFe catalyst exhibited excellent OER performance, as evidenced by a low Tafel slope and overpotential, making it one of the top-performing CoFe-based materials.Next, we focused on improving the electrocatalytic reduction of CO2 to C2+ products by tuning the hydrophilicity of polymer binders. Fluorinated ethylene propylene (FEP), a hydrophobic, CO2-philic polymer, significantly increased the CO2RR selectivity toward C2+ products. We proved that the hydrophobicity of FEP resulted in the retention of CO2 and intermediate CO on the surface of the catalyst, promoting the formation of C2+ products.Finally, we identified the primary degradation mechanisms of CO2 electrolysis in acidic environments to be the flooding of gas diffusion electrodes (GDEs). By separating the inlet catholyte from the outlet liquid products, we successfully kept the pH near the catalyst below a critical value, thereby extending the carbon-based GDE lifetime.In summary, we implemented a range of strategies to enhance both the activity and stability of electrochemical reactions, including the design of electrocatalysts, as well as fine-tuning the reaction environment. Our research has provided insights into the mechanisms that drive these improvements, which were accomplished through structural modifications and alterations in the reaction environments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".
Carbon capture and storage
Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the carbon dioxide stream that is to be captured can result from burning fossil fuels or biomass. Usually the CO2 is captured from large point sources, such as a chemical plant or biomass plant, and then stored in an underground geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change.
Carbon emission trading
Emission trading (ETS) for carbon dioxide (CO2) and other greenhouse gases (GHG) is a form of carbon pricing; also known as cap and trade (CAT) or carbon pricing. It is an approach to limit climate change by creating a market with limited allowances for emissions. This can lower competitiveness of fossil fuels and accelerate investments into low carbon sources of energy such as wind power and photovoltaics. Fossil fuels are the main driver for climate change. They account for 89% of all CO2 emissions and 68% of all GHG emissions.
Show more
Related publications (93)

Understanding the role of surface oxygen-containing functional groups on carbon-supported cobalt catalysts for the oxygen evolution reaction

Andreas Züttel, Thi Ha My Pham, Kangning Zhao, Youngdon Ko, Liping Zhong, Manhui Wei

Supported Co-based catalysts exhibit promising catalytic activities in the oxygen evolution reaction (OER) during alkaline water electrolysis. Surface functionalization of the support modulates the dispersion of the catalysts and their interaction with the ...
ROYAL SOC CHEMISTRY2023

Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling

Sophia Haussener, Etienne Boutin, Evan Fair Johnson, Shuo Liu

Electrochemical conversion of CO2 to fuels and valuable products is one pathway to reduce CO2 emissions. Electrolyzers using gas diffusion electrodes (GDEs) show much higher current densities than aqueous phase electrolyzers, yet models for multi-physical ...
2023

Integrating CO2 mineralization in industrial clusters: the benefits of material and heat integration

François Maréchal, Rafael Amorim Leandro De Castro Amoedo, Julia Granacher, Mouhannad Abou Daher

Curbing and capturing CO2 emissions is no longer enough to cope with the demanding environmental challenges of the coming years. Long-term storage technologies need deployment, to help industrial sectors to reach ambitious emission standards. Mineral carbo ...
2023
Show more
Related MOOCs (3)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.