Random graphIn mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs.
Multipartite graphIn graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite.
Split graphIn graph theory, a branch of mathematics, a split graph is a graph in which the vertices can be partitioned into a clique and an independent set. Split graphs were first studied by , and independently introduced by . A split graph may have more than one partition into a clique and an independent set; for instance, the path a–b–c is a split graph, the vertices of which can be partitioned in three different ways: the clique {a, b} and the independent set {c} the clique {b, c} and the independent set {a} the clique {b} and the independent set {a, c} Split graphs can be characterized in terms of their forbidden induced subgraphs: a graph is split if and only if no induced subgraph is a cycle on four or five vertices, or a pair of disjoint edges (the complement of a 4-cycle).