Publication

Renewable energy integration and waste heat valorization in aluminum remelting for co-producing kerosene and methanol

Abstract

The aluminium sector relies on natural gas for the conversion of recycled scrap into new feedstock, which results in substantial atmospheric emissions. Hydric resources are also impacted, as they serve as heat sinks for the waste heat generated during the casting process. Other chemical industries are also responsible for a large production of waste heat, offgas and environmental emissions, which hinders efforts to decarbonize the sector that depend on them. Methanol and transportation fuels production are examples of those industries. Accordingly, there is a significant potential to decarbonize these productive activities via enhanced waste heat recovery and integration of renewable energy sources. The energy integration of aluminium, methanol and fuels production plants within urban areas also offers major advantages in terms of efficient energy utilization and reduced environmental impact, particularly in situations characterized by uncertain supply chains and fluctuating market prices. Biomass gasification offers an alternative carbon source to fossil fuels, and together with electrification, it may help to diversify and decentralize the energy inputs for industries traditionally dependent on natural gas, establishing resilient and sustainable energy pathways. Carbon abatement, power-to-gas and storage systems provide further advantages by mitigating the effects of seasonal availability and prices of electricity and fuel. Yet, the integration of the various energy technologies and industrial facilities calls for a systematic approach to identify optimal options for meeting the energy demands without significantly compromising the operational feasibility. Therefore, in this work, the most cost-effective technologies with minimum investment that meet the energy demands of the aluminium remelting, methanol and fuels production facilities are studied, aiming to upgrade the industrial waste heat available at low temperature to supply an urban center with variable energy needs. Implementing improved integration strategies shows the potential to reduce overall energy consumption, while achieving net-zero CO2 emissions compared to conventional scenario.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (39)
Waste management
Waste management or waste disposal includes the processes and actions required to manage waste from its inception to its final disposal. This includes the collection, transport, treatment, and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, and economic mechanisms. Waste can be solid, liquid, or gases and each type has different methods of disposal and management.
Waste-to-energy
Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels. The first incinerator or "Destructor" was built in Nottingham, UK, in 1874 by Manlove, Alliott & Co.
Fossil fuel phase-out
Fossil fuel phase-out is the gradual reduction of the use and production of fossil fuels to zero, to reduce deaths and illness from air pollution, limit climate change, and strengthen energy independence. It is part of the ongoing renewable energy transition. Although many countries are shutting down coal-fired power stations, electricity generation is not moving off coal fast enough to meet climate goals. Many countries have set dates to stop selling petrol and diesel cars and trucks, but a timetable to stop burning fossil gas has not yet been agreed.
Show more
Related publications (237)

Industrial European regions at risk within the Fit for 55: How far implementing CBAM can mitigate?

Marc Vielle, Sigit Pria Perdana

The transition to a low-carbon economy can create new job opportunities but may cause job displacement in some sectors that heavily rely on fossil fuels. In order to gain a balanced appraisal in understanding the broader consequences of climate policies, t ...
2025

Renewable energy integration and waste heat valorization in aluminum remelting for co-producing kerosene and methanol

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier

The aluminium sector relies on natural gas for the conversion of recycled scrap into new feedstock, which results in substantial atmospheric emissions. Hydric resources are also impacted, as they serve as heat sinks for the waste heat generated during the ...
2024

CO2 Capture and Management Strategies for Decarbonizing Secondary Aluminium Production

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier

The production of aluminium largely depends on the use of fossil fuels, resulting in the emission of significant amounts of greenhouse gases. As the aluminium industry is working towards decreasing its environmental burdens, the elimination of direct emiss ...
2024
Show more
Related MOOCs (9)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.