Interpret3C: Interpretable Student Clustering Through Individualized Feature Selection
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis we present and analyze approximation algorithms for three different clustering problems. The formulations of these problems are motivated by fairness and explainability considerations, two issues that have recently received attention in the ...
Lensless imaging provides a large panel of benefits : cost, size, weight, etc., that are crucial for wearable application, IoT or medical devices. Such setups require the design of reconstruction algorithms to recover the image from the captured measuremen ...
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous Graph Neural Networks (GNN) require a large number of labeled ...
There is a growing recognition that electronic band structure is a local property of materials and devices, and there is steep growth in capabilities to collect the relevant data. New photon sources, from small-laboratory-based lasers to free electron lase ...
We present a discriminative clustering approach in which the feature representation can be learned from data and moreover leverage labeled data. Representation learning can give a similarity-based clustering method the ability to automatically adapt to an ...
K-means is one of the fundamental unsupervised data clustering and machine learning methods. It has been well studied over the years: parallelized, approximated, and optimized for different cases and applications. With increasingly higher parallelism leadi ...
In this paper, the recommended implementation of the post-quantum key exchange SIKE for Cortex-M4 is attacked through power analysis with a single trace by clustering with the k-means algorithm the power samples of all the invocations of the elliptic curve ...
A simple model to study subspace clustering is the high-dimensional k -Gaussian mixture model where the cluster means are sparse vectors. Here we provide an exact asymptotic characterization of the statistically optimal reconstruction error in this model i ...
Topic models are useful tools for analyzing and interpreting the main underlying themes of large corpora of text. Most topic models rely on word co-occurrence for computing a topic, i.e., a weighted set of words that together represent a high-level semanti ...
In Paralympic cross-country sit skiing, athlete classification is performed by an expert panel, so it may be affected by subjectivity. An evidence-based classification is required, in which objective measures of impairment must be identified. The purposes ...