Prolamins' 3D structure: A new insight into protein modeling using the language of numbers and shapes
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Proteins are foundational biomolecules of life playing a crucial role in a myriad of biological processes. Their function often requires interplay with other biomolecules, including proteins themselves. Protein-protein interactions (PPIs) are essential for ...
The phenomenon of allostery, a general property in proteins that has been heralded as "the second secret of life" remains elusive to our understanding and even more challenging to incorporate into protein design. One example of allosteric proteins with gre ...
Under cold stress, the processes of autophagy, apoptosis and energy metabolism are pivotal for sustaining energy and tissue balance. However, the molecular regulatory mechanisms and interactions underlying these processes are still largely unknown. In this ...
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learni ...
The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calcu ...
In the domain of computational structural biology, predicting protein interactions based on molecular structure remains a pivotal challenge. This thesis delves into this challenge through a series of interconnected studies.The first chapter introduces the ...
Post-translational modifications (PTMs) play a pivotal role in regulating protein structure, interaction, and function. Aberrant PTM patterns are associated with diseases. Moreover, individual PTMs have a complex interaction with each other, known as PTM c ...
As the fundamental machinery orchestrating cellular functions, proteins influence the state of every cell profoundly. As cells exhibit significant variations from one to another, analyzing the proteome on a single-cell level is imperative to unravel their ...
Proteins, the central building blocks of life, play pivotal roles in nearly every biological function. To do so, these macromolecular structures interact with their surrounding environment in complex ways, leading to diverse functional behaviors. The predi ...
One of the goals of synthetic biology is the development of an artificial cell. Building an artificial cell from scratch will provide a deeper understanding of fundamental mechanisms and models in biology and promises to contribute towards building novel p ...