Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one -phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions n >= 3 is completely open. In this context, axially symmetric solutions are expected to play the same role as Simons' cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open. The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one -phase problem. Quite surprisingly, this requires the use of "large solutions" for the fractional Laplacian, which blow up on the free boundary. On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions n
Nicola Marzari, Norma Rivano, Thibault Daniel Pierre Sohier
Xavier Fernandez-Real Girona, Hui Yu
Fabrizio Carbone, Giovanni Maria Vanacore, Ivan Madan, Ido Kaminer, Simone Gargiulo, Ebrahim Karimi