Randomized low-rank approximation and its applications
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Randomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of x(T) Bx for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number ...
The Lyapunov exponent characterizes the asymptotic behavior of long matrix products. Recognizing scenarios where the Lyapunov exponent is strictly positive is a fundamental challenge that is relevant in many applications. In this work we establish a novel ...
2020
, , ,
Transformers achieve remarkable performance in several tasks but due to their quadratic complexity, with respect to the input’s length, they are prohibitively slow for very long sequences. To address this limitation, we express the self-attention as a line ...
Idiap2020
Recursive blocked algorithms have proven to be highly efficient at the numerical solution of the Sylvester matrix equation and its generalizations. In this work, we show that these algorithms extend in a seamless fashion to higher-dimensional variants of g ...
SPRINGER2020
, ,
This work develops novel rational Krylov methods for updating a large-scale matrix function f(A) when A is subject to low-rank modifications. It extends our previous work in this context on polynomial Krylov methods, for which we present a simplified conve ...
SIAM PUBLICATIONS2021
Evaluating the action of a matrix function on a vector, that is x=f(M)v, is an ubiquitous task in applications. When M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the pole ...
Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...
We analyze an expansion of the generalized block Krylov subspace framework of [Electron.\ Trans.\ Numer.\ Anal., 47 (2017), pp. 100-126]. This expansion allows the use of low-rank modifications of the matrix projected onto the block Krylov subspace and con ...
Memristive biosensors have demonstrated excellent capabilities for ultrasensitive bio-detection. In the present work, memristive biosensing chips are designed, fabricated and implemented in a for the first time presented multi-panel on-chip detection for d ...
Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...