Online machine learningIn computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once. Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms.
BackpropagationAs a machine-learning algorithm, backpropagation performs a backward pass to adjust the model's parameters, aiming to minimize the mean squared error (MSE). In a single-layered network, backpropagation uses the following steps: Traverse through the network from the input to the output by computing the hidden layers' output and the output layer. (the feedforward step) In the output layer, calculate the derivative of the cost function with respect to the input and the hidden layers.
Dimensional regularizationNOTOC In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini as well as – independently and more comprehensively – by 't Hooft and Veltman for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number of spacetime dimensions. Dimensional regularization writes a Feynman integral as an integral depending on the spacetime dimension d and the squared distances (xi−xj)2 of the spacetime points xi, .
Mathematical modelA mathematical model is an abstract description of a concrete system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in applied mathematics and in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences (such as economics, psychology, sociology, political science).
Convex optimizationConvex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.
Interior-point methodInterior-point methods (also referred to as barrier methods or IPMs) are a certain class of algorithms that solve linear and nonlinear convex optimization problems. An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967 and reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, which runs in provably polynomial time and is also very efficient in practice.
Foundation modelsA foundation model (also called base model) is a large machine learning (ML) model trained on a vast quantity of data at scale (often by self-supervised learning or semi-supervised learning) such that it can be adapted to a wide range of downstream tasks. Foundation models have helped bring about a major transformation in how artificial intelligence (AI) systems are built, such as by powering prominent chatbots and other user-facing AI.
Loss functions for classificationIn machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). Given as the space of all possible inputs (usually ), and as the set of labels (possible outputs), a typical goal of classification algorithms is to find a function which best predicts a label for a given input .
Large language modelA large language model (LLM) is a language model characterized by its large size. Their size is enabled by AI accelerators, which are able to process vast amounts of text data, mostly scraped from the Internet. The artificial neural networks which are built can contain from tens of millions and up to billions of weights and are (pre-)trained using self-supervised learning and semi-supervised learning. Transformer architecture contributed to faster training.
Artificial intelligenceArtificial intelligence (AI) is the intelligence of machines or software, as opposed to the intelligence of human beings or animals. AI applications include advanced web search engines (e.g., Google Search), recommendation systems (used by YouTube, Amazon, and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Waymo), generative or creative tools (ChatGPT and AI art), and competing at the highest level in strategic games (such as chess and Go).