Publication

High-Resolution Modeling Without Computation Slowdown for PETALE in CROCUS

Abstract

In a collaboration between Ecole Polytechnique Fédérale de Lausanne (EPFL) and CEA, in the fall of 2020, the experimental Programme d’Étude en Transmission de l’Acier Lourd et ses Eléments (PETALE) was successfully carried out in the CROCUS reactor of EPFL. This article presents and compares the methods tested in the modeling of the experiments, specifically focusing on the metal reflectors installed at the periphery of CROCUS. A basic design model consisting of a few cuboids was refined to a fully detailed version, without impacting the run time of simulations. Notably, each reflector sheet of PETALE was segmented into 121 voxels based on topological measurements. This detailed voxelization did not affect calculation times, thanks to the use of three-dimensional lattices as available in Serpent 2. Profiling of the simulations revealed the high computational surface transformations associated with Serpent 2 and highlighted the efficiency benefits of factorizing these into universe transformations. As the CROCUS simulations were carried out using a modified build of Serpent 2, additional simulations were also performed using a standard version of Serpent 2 with a GODIVA model as a neutron source to ensure that the findings are generalizable. These additional tests confirmed the initial results, with significant performance variations observed between the models, particularly larger in surface-tracking mode than in delta-tracking mode. Consequently, the modeling method may therefore be applied to future high-fidelity modeling of neutron transmission and shielding experiments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Neutron
The neutron is a subatomic particle, symbol _Neutron or _Neutron0, which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one dalton, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.
Neutron source
A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear power. Neutron source variables include the energy of the neutrons emitted by the source, the rate of neutrons emitted by the source, the size of the source, the cost of owning and maintaining the source, and government regulations related to the source.
Complexity class
In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements.
Show more
Related publications (37)

Quantifying the Unknown: Data-Driven Approaches and Applications in Energy Systems

Paul Scharnhorst

In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
EPFL2024

A comprehensive review of digital twin-part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives

Olga Fink, Chao Hu, Sayan Ghosh

As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision- and policy-making, and more, by comprehensively m ...
SPRINGER2023

Modeling of second-order nonlinear metasurfaces

Olivier Martin, Karim Achouri, Andrei Kiselev

We present a frequency-domain modeling technique for second-order nonlinear metasurfaces. The technique is derived from the generalized sheet transition conditions (GSTCs), which have been so far mostly used for modeling linear metasurfaces. In this work, ...
IOP Publishing Ltd2022
Show more
Related MOOCs (14)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.