Publication

Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures

Related publications (32)

Towards Scalable Electronics: Synthetic 2D Materials for Large-Area 2D Circuit Integration

Zhenyu Wang

In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
EPFL2024

High-κ Wide-Gap Layered Dielectric for Two-Dimensional van der Waals Heterostructures

Andras Kis, Edoardo Lopriore, Asmund Kjellegaard Ottesen, Gabriele Pasquale

van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-kappa layered d ...
2024

Electron-beam based nanoscale quantum controls

Hoda Shirzad

Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
EPFL2024

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.