Classical and quantum mechanics of a chaotic hamiltonian system
Related publications (70)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In quantum mechanics, the Heisenberg uncertainty principle places a fundamental limit in the measurement precision for certain pairs of physical quantities, such as position and momentum, time and energy or amplitude and phase. Due to the Heisenberg uncert ...
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...
We consider the Vlasov–Poisson system with repulsive interactions. For initial data a small, radial, absolutely continuous perturbation of a point charge, we show that the solution is global and disperses to infinity via a modified scattering along traject ...
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
Electroencephalogram microstates are recurrent scalp potential configurations that remain stable for around 90 ms. The dynamics of two of the four canonical classes of microstates, commonly labeled as C and D, have been suggested as a potential endophenoty ...
Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new ...
In this work, we develop a method to design control pulses for fixed-frequency superconducting qubits coupled via tunable couplers based on local control theory, an approach commonly employed to steer chemical reactions. Local control theory provides an al ...
Irradiation of a molecular system by an intense laser field can trigger dynamics of both electronic and nuclear subsystems. The lighter electrons usually move on much faster, attosecond timescale but the slow nuclear rearrangement damps ultrafast electroni ...
It is known that a one-dimensional quantum particle is localized when subjected to an arbitrarily weak random potential. It is conjectured that localization also occurs for an arbitrarily weak potential generated from the nonlinear skew-shift dynamics: $v_ ...
Mechanical oscillators are among the most important scientific tools in the modern physics. From the pioneering experiments in 18th by founding fathers of modern physics such as Newton, Hooke and Cavendish to the ground braking experiments in the 21th cent ...