Lustre (mineralogy)Lustre (British English) (or luster) (American English; see spelling differences) is the way light interacts with the surface of a crystal, rock, or mineral. The word traces its origins back to the Latin lux, meaning "light", and generally implies radiance, gloss, or brilliance. A range of terms are used to describe lustre, such as earthy, metallic, greasy, and silky. Similarly, the term vitreous (derived from the Latin for glass, vitrum) refers to a glassy lustre. A list of these terms is given below.
SandstoneSandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks. Most sandstone is composed of quartz or feldspar (both silicates) because they are the most resistant minerals to weathering processes at the Earth's surface. Like uncemented sand, sandstone may be any color due to impurities within the minerals, but the most common colors are tan, brown, yellow, red, grey, pink, white, and black.
Rock mechanicsRock mechanics is a theoretical and applied science of the mechanical behavior of rocks and rock masses. Compared to geology, it is the branch of mechanics concerned with the response of rock and rock masses to the force fields of their physical environment. Rock mechanics is part of a much broader subject of geomechanics, which is concerned with the mechanical responses of all geological materials, including soils. Rock mechanics is concerned with the application of the principles of engineering mechanics to the design of structures built in or on rock.
PetrophysicsPetrophysics (from the Greek πέτρα, petra, "rock" and φύσις, physis, "nature") is the study of physical and chemical rock properties and their interactions with fluids. A major application of petrophysics is in studying reservoirs for the hydrocarbon industry. Petrophysicists work together with reservoir engineers and geoscientists to understand the porous media properties of the reservoir. Particularly how the pores are interconnected in the subsurface, controlling the accumulation and migration of hydrocarbons.
San Andreas FaultThe San Andreas Fault is a continental right-lateral strike-slip transform fault that extends roughly through the Californias. It forms the tectonic boundary between the Pacific Plate and the North American Plate. Traditionally, for scientific purposes, the fault has been classified into three main segments (northern, central, and southern), each with different characteristics and a different degree of earthquake risk. The average slip rate along the entire fault ranges from per year.
Porphyry (geology)Porphyry (ˈpɔrfəri ) is any of various decorative granites or igneous rocks with coarse-grained crystals such as feldspar or quartz dispersed in a fine-grained silicate-rich, generally aphanitic matrix or groundmass. The larger crystals are called phenocrysts. In its non-geologic, traditional use, the term porphyry usually refers to the purple-red form of this stone, valued for its appearance, but other colours of decorative porphyry are also used such as "green", "black" and "grey".
Optical mineralogyOptical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution.
Clay mineralClay minerals are hydrous aluminium phyllosilicates (e.g. kaolin, Al2Si2O5(OH)4), sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces. Clay minerals form in the presence of water and have been important to life, and many theories of abiogenesis involve them. They are important constituents of soils, and have been useful to humans since ancient times in agriculture and manufacturing.
Transform faultA transform boundary occurs when two tectonic plates move past one another. Shear stress operates at transform boundaries, which involves sliding motion. No lithosphere is destroyed or created, and mountain chains are not built at transform boundaries. They accommodate the lateral offset between segments of divergent boundaries, forming a zigzag pattern. This is a result of oblique seafloor spreading where the direction of motion is not perpendicular to the trend of the overall divergent boundary.
Plate tectonicsPlate tectonics (from the tectonicus, from the τεκτονικός) is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.