Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Speaker detection is an important component of a speech-based user interface. Audiovisual speaker detection, speech and speaker recognition or speech synthesis for example find multiple applications in human-computer interaction, multimedia content indexin ...
Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce generative models for melodies. We decompose melodic ...
We address issues for improving hands-free speech recognition performance in the presence of multiple simultaneous speakers using multiple distant microphones. In this paper, a log spectral mapping is proposed to estimate the log mel-filterbank outputs of ...
The goal of this work is to provide robust and accurate speech detection for automatic speech recognition (ASR) in meeting room settings. The solution is based on computing long-term modulation spectrum, and examining specific frequency range for dominant ...
Most state-of-the-art automatic speech recognition (ASR) systems deal with noise in the environment by extracting noise robust features which are subsequently modelled by a Hidden Markov Model (HMM). A limitation of this feature-based approach is that the ...
Modern speech recognition has many ways of quantifying the misrecognitions a speech recognizer makes. The errors in modern speech recognition makes extensive use of the Levenshtein algorithm to find the distance between the labeled target and the recognize ...
In this paper, we present a novel feature normalization method in the log-scaled spectral domain for improving the noise robustness of speech recognition front-ends. In the proposed scheme, a non-linear contrast stretching is added to the outputs of log me ...
In this paper, we investigate the significance of contextual information in a phoneme recognition system using the hidden Markov model - artificial neural network paradigm. Contextual information is probed at the feature level as well as at the output of t ...
In this paper, we present a novel feature normalization method in the log-scaled spectral domain for improving the noise robustness of speech recognition front-ends. In the proposed scheme, a non-linear contrast stretching is added to the outputs of log me ...
We present a feature selection method based on information theoretic measures, targeted at multimodal signal processing, showing how we can quantitatively assess the relevance of features from different modalities. We are able to find the features with the ...