Publication

Influence of the protein environment on spectroscopy and ultrafast dynamics of retinal in bacteriorhodopsin

Selma Schenkl
2004
EPFL thesis
Abstract

The environment is important for the exact course of a chemical reaction. As an example of the strong influence of the environment on the reaction, this work studies the isomerization reaction of the chromophore retinal in the binding pocket of the protein bacteriorhodopsin. Three selected distance scales with reference to the chromophore are addressed: The distant protein surface at a length scale of 3-5 nm, the fuzzy environment of the binding pocket (1-2 nm) and the immediate neighborhood represented by the amino acid tryptophan Trp86 (5 Å). First, static absorption and fluorescence spectroscopies are applied to three dimensionally crystallized bacteriorhodopsin. An especially adapted set-up was developed for each task. The analysis of data is carried out in comparison with the measured spectra of the native protein membrane in solution. While the absorption spectrum shows a broadening on the high-energy side, the fluorescence spectrum deviates in the general shape of that measured in solution. The synoptic analysis of all spectra reveals the existence of three spectroscopically distinct species in the crystal: BR490 (absorption maximum at 490 nm) with a relative contribution of 28%, BR570 (native spectrum of solution, 68%), and BR610 ("blue membrane", 4%). BR490 appears particularly in the additional fluorescence band at 550 nm and is assigned to the dehydrated species of bacteriorhodopsin. The presence of that particular species indicates the suppression of rehydration in a partially dehydrated crystal and shows that the three dimensional arrangement hinders water diffusion. A simple model, close domains are assumed to form, eventually suppressing free water diffusion in a crystal. The lack of water on the protein surface modifies the protonation states of the amino acids in the binding pocket and therefore the optical properties of the retinal. The chromophore actually reacts on the alteration of its distant environment upon incorporation in the protein crystal. The second distance scale - the fuzzy environment - is addressed by a time-integrated fluorescence spectroscopy on native bacteriorhodopsin as function of the excitation wavelength (430 nm to 650 nm). The optimized experimental set-up guaranteed that the fluorescence of only the excited state I460 contributed. The measured spectra show maxima at 740 nm, and exhibit a Stokes shift of 5000 cm-1, independent of the excitation wavelength. The similarity of the fluorescence excitation spectrum with the spectrum of absorbed photons excludes energy-dependent loss channels. However, the spectra show a growing asymmetric broadening on the high-energy side with decreasing excitation wavelength. The additional fluorescence originates from vibrational hot states, also supported by the decomposition by Gaussian functions. A comparison with the fluorescence spectrum of blue membranes shows that the low-energy part also arises from vibrational hot states. Consequently, the first fast intramolecular vibrational energy relaxation does not entirely distribute the access-energy to other modes. The remaining energy is found in a quasi-static occupation of vibrational modes. The subsequent second vibrational relaxation — probably not only involving the retinal but also the protein — takes place on a time scale similar to that of the isomerization. The fast isomerization reaction prevents dissipation of energy relaxation of the excited state of the retinal into the protein environment. On a third distance scale, femtosecond spectroscopy in the UV offers a direct view into the electrostatic interaction of the chromophore with its immediate neighborhood. For the first time, the retinal isomerization was studied within the spectral window of the tryptophan absorption from 265 nm to 310 nm. For this, a set-up adapted to UV wavelengths was realized, basing on non-linear optics. The developed single-shot detection system yields a sensitivity of 10-5 in optical density. In the transient absorption measurements, a time resolution of 90 fs was achieved. At short probe wavelengths (265 nm - 294 nm), the measured transients show first a fast reduction of the absorption which subsequently recovers on three time scales (380 fs, 3 ps, > 16 ps). With increasing probe wavelength an induced transient absorption becomes dominant (282 nm - 294 nm). It has a rise time of 280 fs, and decays with a time constant of 4.3 ps. With further increasing probe wavelength the absorption signal decays faster. In response to the complex signature of the transients, an iterative and model-independent transient-decomposition is introduced. A set of three basis elements were identified: one bleach, and two absorption transients. The two induced absorption transients are assigned to retinal. The dynamics of the excited state (I460) in the first retinal-transient is described by two time constants (280 fs and 1 ps). The fast time constant leads to the photoproduct, while the slower one leads back to the ground state, presumably by internal conversion. The 250 fs delayed onset of the second transient (photo-intermediate J) is connected to a wave packet motion in the excited state. This delayed onset of the transient was observed for the first time. It demands a rise time of the J photo-intermediate of only 280 fs. This contrasts common estimates of 500 fs given in literature. For the first time, the temporal behavior of the permanent dipole moment of retinal is observed experimentally. Its evolution is imprinted in the dominant bleach feature (265 nm - 294 nm), originating from tryptophan Trp86. In the excited state, the permanent dipole moment increases strongly within the first 250 fs, and decays exponentially afterwards, following the formation of the photoproduct. However, the related time constant of 380 fs is slightly greater than that of 280 fs of the photoproduct J. This discrepancy may indicate a remaining long-lived polarization of the binding pocket. In brief, by using the intrinsic tryptophan as a probe, the local evolution of the electric field during the isomerization reaction was investigated. Indeed the isomerization reaction is reflected in the immediate environment. The variety of optical spectroscopy provides methods especially adapted for studying the influences of the environment on a chemical reaction. The results achieved here highlight the importance of these influences.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Fluorescence spectroscopy
Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily, visible light. A complementary technique is absorption spectroscopy. In the special case of single molecule fluorescence spectroscopy, intensity fluctuations from the emitted light are measured from either single fluorophores, or pairs of fluorophores.
Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Ultrafast laser spectroscopy
Ultrafast laser spectroscopy is a spectroscopic technique that uses ultrashort pulse lasers for the study of dynamics on extremely short time scales (attoseconds to nanoseconds). Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below. Dynamics on the as to fs time scale are in general too fast to be measured electronically.
Show more
Related publications (436)

Applications of the thawed Gaussian approximation to electronic spectroscopy.

Eriks Kletnieks

The exploration of electronically excited states and the study of diverse photochemical and photophysical processes are the main goals of molecular electronic spectroscopy. Exact quantum-mechanical simulation of such experiments is, however, beyond current ...
EPFL2024

Automated all-functionals infrared and Raman spectra

Nicola Marzari, Lorenzo Bastonero

Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
Nature Portfolio2024

Pressure stabilization effect on the donor-acceptor polyiodide chains in tetraethylammonium bis(diiodine) triiodide - insights from Raman spectroscopy

Nicola Casati, Tomasz Poreba

Polyiodides present high bonding flexibility already at ambient conditions, and undergo significant pressure-induced structural deformations. Resonant Raman spectroscopy has been widely used to study I-I bonds in various polyiodides, but it carries a risk ...
Cambridge2024
Show more
Related MOOCs (31)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.