Ludwig BoltzmannLudwig Eduard Boltzmann (ˈluːtvɪç ˈbɔlt͡sman; 20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of thermodynamics. In 1877 he provided the current definition of entropy, , where Ω is the number of microstates whose energy equals the system's energy, interpreted as a measure of statistical disorder of a system. Max Planck named the constant kB the Boltzmann constant.
Delta potentialIn quantum mechanics the delta potential is a potential well mathematically described by the Dirac delta function - a generalized function. Qualitatively, it corresponds to a potential which is zero everywhere, except at a single point, where it takes an infinite value. This can be used to simulate situations where a particle is free to move in two regions of space with a barrier between the two regions.
Free particleIn physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space. The classical free particle is characterized by a fixed velocity v.
Particle in a ringIn quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring (technically, whose configuration space is the circle ) is Using polar coordinates on the 1-dimensional ring of radius R, the wave function depends only on the angular coordinate, and so Requiring that the wave function be periodic in with a period (from the demand that the wave functions be single-valued functions on the circle), and that they be normalized leads to the conditions and Under these conditions, the solution to the Schrödinger equation is given by The energy eigenvalues are quantized because of the periodic boundary conditions, and they are required to satisfy or The eigenfunction and eigenenergies are where Therefore, there are two degenerate quantum states for every value of (corresponding to ).
Configuration entropyIn statistical mechanics, configuration entropy is the portion of a system's entropy that is related to discrete representative positions of its constituent particles. For example, it may refer to the number of ways that atoms or molecules pack together in a mixture, alloy or glass, the number of conformations of a molecule, or the number of spin configurations in a magnet. The name might suggest that it relates to all possible configurations or particle positions of a system, excluding the entropy of their velocity or momentum, but that usage rarely occurs.
Gravitational binding energyThe gravitational binding energy of a system is the minimum energy which must be added to it in order for the system to cease being in a gravitationally bound state. A gravitationally bound system has a lower (i.e., more negative) gravitational potential energy than the sum of the energies of its parts when these are completely separated—this is what keeps the system aggregated in accordance with the minimum total potential energy principle.
CoulombThe coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to 5e27/801088317 elementary charges, , (about 6.241509e18 ). By 1878, the British Association for the Advancement of Science had defined the volt, ohm, and farad, but not the coulomb.