Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We introduce the notion of electronic enthalpy for first-principles structural and dynamical calculations of finite systems under pressure. An external pressure field is allowed to act directly on the electronic structure of the system studied via the grou ...
The aim of this work is to provide mathematically sound and computationally effective tools for the numerical simulation of the interaction between fluid and structures as occurring, for instance, in the simulation of the human cardiovascular system. This ...
A novel implicit cell-vertex finite volume method is presented for the solution of both the Navier-Stokes equations and the governing equations for certain viscoelastic fluids. The key idea is the elimination of the pressure term from the momentum equation ...
By comparing a kinetic and a thermal-equilibrium theory of polariton Bose-Einstein condensation, we study under what conditions the dynamical condensation under steady-state non-resonant pumping can approach thermal equilibrium. In particular, we study the ...
We show that an optical pulse inherently computes three-dimensional classical fluid dynamics. Taking optical diffraction, dispersion and nonlinearity into account, one can define the metaphoric fluid density, velocity and vorticity in the optical pulse. We ...
A nonlinear model for single-phase fluid flow in slightly compressible porous media is presented and solved approximately. The model assumes state equations for density, porosity, viscosity and permeability that are exponential functions of the fluid (eith ...
We investigate the nonlinear optical dynamics of excitons and trions in CdTe modulation-doped quantum wells by time and spectrally resolved pump-probe experiments. We find that the nonlinearities induced by excitons are different from those due to the pres ...
Low pressure plasma spraying (LPPS) is a thermal spraying technique that has found a niche for low oxidation products. It uses a low pressure environment (i.e:, chamber pressure between 2 and 90 kPa) and yields supersonic plasma jets. The enthalpy probe te ...
Measurement of key plasma jet properties, such as the Mach number, electron density and temperature, in a low pressure environment, were performed using double Langmuir probes and Mach probes. In particular, under-expanded jets are studied in detail by per ...
Low Pressure Plasma Spraying (LPPS) processes use a DC plasma jet expanding at low pressure for fast deposition of dense coatings in a controlled atmosphere. The LPPS technology is widely used industrially in particular in the aeronautics and medical indus ...