Efficient integration of automated speech recognition in the framework of dialogue-based vocal systems
Related publications (194)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Phonological studies suggest that the typical subword units such as phones or phonemes used in automatic speech recognition systems can be decomposed into a set of features based on the articulators used to produce the sound. Most of the current approaches ...
Standard automatic speech recognition (ASR) systems use phoneme-based pronunciation lexicon prepared by linguistic experts. When the hand crafted pronunciations fail to cover the vocabulary of a new domain, a grapheme-to-phoneme (G2P) converter is used to ...
Posterior features have been shown to yield very good performance in multiple contexts including speech recognition, spoken term detection, and template matching. These days, posterior features are usually estimated at the output of a neural network. More ...
This paper introduces a non-linear vector-based feature mapping approach to extract robust features for au- tomatic speech recognition (ASR) of overlapping speech using a microphone array. We explore different configurations and additional sources of infor ...
Nowadays, many systems rely on fusing different sources of information to recognize human activities and gestures, speech, or brain activities for applications in areas such as clinical practice, and health care and Human Computer Interaction (HCI). Typica ...
We present a theoretical investigation into the use of normalised artificial neural network (ANN) outputs in the context of hidden Markov models (HMMs). The work is motivated by the pursuit of a more theoretically rigorous understanding of the Kullback-Lie ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
In this paper, we describe a novel method for handwriting style identification. A handwriting style can be common to one or several writer. It can represent also a handwriting style used in a period of the history or for specific document. Our method is ba ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
This paper proposes a system for text-independent writer identification based on Arabic handwriting using only 21 features. Gaussian Mixture Models (GMMs) are used as the core of the system. GMMs provide a powerful representation of the distribution of fea ...