Ridge detectionIn , ridge detection is the attempt, via software, to locate ridges in an , defined as curves whose points are local maxima of the function, akin to geographical ridges. For a function of N variables, its ridges are a set of curves whose points are local maxima in N − 1 dimensions. In this respect, the notion of ridge points extends the concept of a local maximum. Correspondingly, the notion of valleys for a function can be defined by replacing the condition of a local maximum with the condition of a local minimum.
Absolutely convex setIn mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. A subset of a real or complex vector space is called a and is said to be , , and if any of the following equivalent conditions is satisfied: is a convex and balanced set.
Convex functionIn mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain.
Sinc functionIn mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized. In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x). In digital signal processing and information theory, the normalized sinc function is commonly defined for x ≠ 0 by In either case, the value at x = 0 is defined to be the limiting value for all real a ≠ 0 (the limit can be proven using the squeeze theorem).
Convex optimizationConvex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.
Locally convex topological vector spaceIn functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family.