Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Accuracy of oversampled analog-to-digital (A/D) conversion, the dependence of accuracy on the sampling interval, t, and on the bit rate are characteristics fundamental to A/D conversion but not completely understood. These characteristics are studied in th ...
Institute of Electrical and Electronics Engineers2001
Oversampled analog-to-digital conversion is a technique which permits high conversion resolution using coarse quantization. Classically, by lowpass filtering the quantized oversampled signal, it is possible to reduce the quantization error power in proport ...
Consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate of innovation include streams of Diracs (e.g., the Poisson process), nonuniform ...
Institute of Electrical and Electronics Engineers2002
We consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, piecewise polynomials. We demonstrate that by using an adequate sampling kernel and a sampli ...
The field of signal processing has known tremendous progress with the
development of digital signal processing. The first foundation of digital signal processing is due to Shannon's sampling theorem which shows that any bandlimited analog signal can... ...
Many communication systems are {\em bandwidth-expanding}: the transmitted signal occupies a bandwidth larger than the {\em symbol rate}. The sampling theorems of Kotelnikov, Shannon, Nyquist et al. shows that in order to represent a bandlimited signal, it ...
Recently a sampling theorem for a certain class of signals with finite rate of innovation (which includes for example stream of Diracs) has been developed. In essence, such non band-limited signals can be sampled at or above the rate of innovation. In the ...