Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Musical and audio signals in general form a major part of the large amount of data exchange taking place in our information-based society. Transmission of high quality audio signals through narrow-band channels, such as the Internet, requires refined metho ...
Microscopy imaging often suffers from limited depth-of-field. However, the specimen can be “optically sectioned” by moving the object along the optical axis. Then different areas appear in focus in different images. Extended depth-of-field is a fusion algo ...
Statistical Parametric Mapping (SPM) is a widely deployed tool for detecting and analyzing brain activity from fMRI data. One of SPM's main features is smoothing the data by a Gaussian filter to increase the SNR. The subsequent statistical inference is bas ...
The Continuous Wavelet Transform (CWT) is an effective way to analyze nonstationary signals and to localize and characterize singularities. Fast algorithms have already been developed to compute the CWT at integer time points and dyadic or integer scales. ...
We present complex rotation-covariant multiresolution families aimed for image analysis. Since they are complex-valued functions, they provide the important phase information, which is missing in the discrete wavelet transform with real wavelets. Our basis ...
Summary The continuous wavelet transform (CWT) is a common signal-processing tool for the analysis of nonstationary signals. We propose here a new B-spline-based method that allows the CWT computation at any scale. A nice property of the algorithm is that ...
Linear transforms and expansions are fundamental mathematical tools of signal processing. In particular, the wavelet transform has played an important role in several signal processing tasks, compression being a prime example. A signal can be represented i ...
Over the last decade or so, wavelets have had a growing impact on signal processing theory and practice, both because of the unifying role and their successes in applications. Filter banks, which lie at the heart of wavelet-based algorithms, have become st ...
In this work, we study the effect of inserting spatially local temporal adaptivity to motion compensated frame adaptive transforms for video coding. Motion compensation aligns the temporal wavelet decomposition along motion trajectories. However, valid tra ...
I. Introduction Wavelets are the result of collective efforts that recognized common threads between ideas and concepts that had been independently developed and investigated by distinct research communities. They provide a unifying framework for decompos ...