Covariance matrixIn probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Information asymmetryIn contract theory and economics, information asymmetry deals with the study of decisions in transactions where one party has more or better information than the other. Information asymmetry creates an imbalance of power in transactions, which can sometimes cause the transactions to be inefficient, causing market failure in the worst case. Examples of this problem are adverse selection, moral hazard, and monopolies of knowledge. A common way to visualise information asymmetry is with a scale, with one side being the seller and the other the buyer.
Mutual informationIn probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.
Information economicsInformation economics or the economics of information is the branch of microeconomics that studies how information and information systems affect an economy and economic decisions. One application considers information embodied in certain types of commodities that are "expensive to produce but cheap to reproduce." Examples include computer software (e.g., Microsoft Windows), pharmaceuticals, and technical books. Once information is recorded "on paper, in a computer, or on a compact disc, it can be reproduced and used by a second person essentially for free.
Non-negative matrix factorizationNon-negative matrix factorization (NMF or NNMF), also non-negative matrix approximation is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered.