**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Oversampled A/D Conversion and Error-Rate Dependence of Non-Bandlimited Signals with Finite Rate of Innovation

Abstract

We study the problem of A/D conversion and error-rate dependence of a class of non-bandlimited signals which have a finite rate of innovation, particularly, a continuous periodic stream of Diracs, characterized by a finite set of time positions and weights. Previous research has only considered sampling of this type of signals, ignoring the presence of quantization, which is necessary for any practical application. We first define the concept of consistent reconstruction for these signals and introduce the operations of both: a) oversampling in frequency, determined by the bandwidth of the low pass filtering used in the signal acquisition, and b) oversampling in time, determined by the number of samples in time taken from the filtered signal. Accuracy in a consistent reconstruction is achieved by enforcing the reconstructed signal to satisfy three sets of constrains, defined by: the low-pass filtering operation, the quantization operation itself and the signal space of continuous periodic streams of Diracs. We provide two schemes to reconstruct the signal. For the first one, we prove that the mean squared error (MSE) of the time positions is of the order of O(1/R_t^2R_f^3), where R_t and R_f are the oversampling ratios in time and in frequency, respectively. For the second scheme, which has a higher complexity, it is experimentally observed that the MSE of the time positions is of the order of O(1/R_t^2R_f^5). Our experimental results show a clear advantage of consistent reconstruction over non-consistent reconstruction. Regarding the rate, we consider a threshold crossing based scheme where, as opposed to previous research, both oversampling in time and also in frequency influence the coding rate. We compare the error-rate dependence behavior that is obtained from both increasing the oversampling in time and in frequency, on the one hand, and on the other hand, from decreasing the quantization stepsize.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (156)

Related concepts (33)

Related MOOCs (10)

Ontological neighbourhood

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter. In optics, high-pass and low-pass may have different meanings, depending on whether referring to the frequency or wavelength of light, since these variables are inversely related.

In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The IEEE Transactions on Signal Processing includes audio, video, speech, , sonar, and radar as examples of signals. A signal may also be defined as observable change in a quantity over space or time (a time series), even if it does not carry information.

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor.

Shannon's sampling theorem for bandlimited signals, formulated in 1949, has become a cornerstone for modern digital communications and signal processing. The importance of sampling and reconstruction of analog signals has led to great advances in the field ...

2022,

This paper describes a balanced frequency shift keying (FSK) modulation, namely quasi-balanced FSK (QB-FSK), for energy-efficient high-data-rate communication. Not suffering from data-pattern dependency, the proposed modulation method enables frequency mod ...

,

Integrated microring resonators are well suited for wavelength-filtering applications in optical signal processing, and cascaded microring resonators allow flexible filter design in coupledresonator optical waveguide (CROW) configurations. However, the imp ...