Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
We present a numerical model for the approximation of multiphase flows with free surfaces and strong interfacial effects. The model relies on the multiphase incompressible Navier-Stokes equations, and includes surface tension effects on the interfaces betw ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
We present a finite elements-neural network approach for the numerical approximation of parametric partial differential equations. The algorithm generates training data from finite element simulations, and uses a data -driven (supervised) feedforward neura ...
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...
We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particula ...