**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Numerical modeling of cohesive sediment transport and bed morphology in estuaries

Abstract

Two major lines of investigation have been pursued in this thesis: (1) More efficient, robust and realistic numerical techniques are designed for the simulation of complex turbulent fluid flows; (2) A new algorithm and its analysis is performed in the context of multiphasic fluid flow, for a cohesive fine-grained sediment (fluid mud) transport in estuaries. Estuaries exist between marine and freshwater system where waters of different physical, chemical and biological composition meet, combine and disperse primarily due to tidal influences. In the present thesis, the behavior of cohesive sediment in estuaries is reviewed based on the existing literature. Basic theories and recent developments are introduced to describe the formation of fluid mud from a very dilute suspension and its motion down a natural river bed with complex bathymetry. The present work contributes to the numerical simulation of complex turbulent multiphasic fluid flows encountered in estuarine channels, with the aim of the better understanding of the underlying physical processes as well as predicting realistically the cohesive sediment transport and bed morphology in such a zone. The model is based on the mass preserving method by using the so-called Raviart-Thomas finite element on the unstructured mesh in the horizontal plane. In the vertical, the computational domain is divided into number of layers at predefined heights and the method uses a conventional conforming P1 finite element scheme, with the advantage that the lowermost and uppermost layers variable height allow a faithful representation of the time-varying bed and free surface, respectively. Concerning the modeling of turbulence, the research effort focuses on the turbulence two-equation k - ε closure for the vertical parameterization of eddy viscosity. More precisely, a robust up-to-date algorithm is used for this issue. The new methodology is developed with the aim to account for more general relevant effects in the closure. The proposed model offers the capability to cope with the stiffness problem introduced by the large difference between the solid phase flow time scale and the hydrodynamic one, by using a sub-cycling strategy, whereas the splitting scheme is adopted with the aim of stability and the positivity of the relevant turbulent variables. The flexibility of the model and its performance are evaluated on several free-surface flow configurations with increasing complexity : homogeneous unsteady non-uniform flows in plane open channel flows, U-shaped (193°) curved open channel flow. Concerning the cohesive sediment transport, most of the existing models in the literature assume the analogous transport characteristics with that of the coarse sediment and adopt the relevant developed sediment transport for the latter to treat the former. Moreover, these existing models do not account for the consolidation of the mud-bed. The present research effort focused on a novel methodology based on the realistic empirical relationships, which accounts for the mutually exclusive processes for re-suspension and/or erosion and deposition of fine sediment, whereas only a limited range of bed shear stresses is allowed for simultaneous erosion and deposition to occur. Hence, on this basis, the new model investigated the bed morphology evolution by taking into account of the fluidization and/or consolidation of the fluid mud, which was handled by modeling the bed in three layers: (i) the mud-bed layer, (ii) the partially consolidated bed and (iii) the fully consolidated bed. The prediction of deposition/re-suspension using these two different methods lead to a non negligible difference in the results. Therefore, investigation of the true mechanism of erosion/deposition processes for cohesive sediments and their implementation in the numerical model is very important. This suggests that a realistic prediction must account for the fresh mud-bed re-suspension once deposited, as well as the consolidation and/or fluidization of the mud-bed deposits. Finally, the capability and improvements of the model are demonstrated, and its predicting performance is successfully evaluated by applying it to the simulation of the Po River Estuary (PRE) in Italy, which is the main source of river water discharge into the Northern Adriatic Sea. The analysis showed that the consolidation/fluidization process at the bed may have important influence on the prediction of bed morphology evolution. The three-layer approach used in this thesis is a first attempt to model these processes in detail within a numerical model.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (44)

Computer simulation

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliabi

Free surface

In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress,
such as the interface between two homogeneous fluids.
An example of two such homogeneous fluids wo

Open-channel flow

In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These tw

Related publications (101)

Loading

Loading

Loading

Mathematical and numerical aspects of free surface flows are investigated. On one hand, the mathematical analysis of some free surface flows is considered. A model problem in one space dimension is first investigated. The Burgers equation with diffusion has to be solved on a space interval with one free extremity. This extremity is unknown and moves in time. An ordinary differential equation for the position of the free extremity of the interval is added in order to close the mathematical problem. Local existence in time and uniqueness results are proved for the problem with given domain, then for the free surface problem. A priori and a posteriori error estimates are obtained for the semi-discretization in space. The stability and the convergence of an Eulerian time splitting scheme are investigated. The same methodology is then used to study free surface flows in two space dimensions. The incompressible unsteady Navier-Stokes equations with Neumann boundary conditions on the whole boundary are considered. The whole boundary is assumed to be the free surface. An additional equation is used to describe the moving domain. Local existence in time and uniqueness results are obtained. On the other hand, a model for free surface flows in two and three space dimensions is investigated. The liquid is assumed to be surrounded by a compressible gas. The incompressible unsteady Navier-Stokes equations are assumed to hold in the liquid region. A volume-of-fluid method is used to describe the motion of the liquid domain. The velocity in the gas is disregarded and the pressure is computed by the ideal gas law in each gas bubble trapped by the liquid. A numbering algorithm is presented to recognize the bubbles of gas. Gas pressure is applied as a normal force on the liquid-gas interface. Surface tension effects are also taken into account for the simulation of bubbles or droplets flows. A method for the computation of the curvature is presented. Convergence and accuracy of the approximation of the curvature are discussed. A time splitting scheme is used to decouple the various physical phenomena. Numerical simulations are made in the frame of mould filling to show that the influence of gas on the free surface cannot be neglected. Curvature-driven flows are also considered.

Software engineering always cares to provide solutions for building applications as close as possible to what they should be, according to the requirements and the final users needs. Systems behavior simulation is a very common application to virtually reproduce and often predict the real-world behavior. Simulation is one of the most operational research tool in a large variety of engineering and scientific domains: Transport, telecommunication, medicine, chemical processes, physics, etc. The complexity of such application is relative to the increasing complexity of the systems. In this context, it is relevant to bring together different tools and formalisms such as markovian chain, Petri nets, etc., to improve the existent approaches and so to answer the simulations performances needs. The principle objective of this thesis is to bring together techniques from software engineering and safety engineering in order to improve the state of the art of modeling and simulation of dynamic systems in the industrial context. In addressing this objective, this work initially involves defining the essential limitations of the used formalisms, methods and tools regarding from one hand the software engineering modeling and simulation techniques and from the other hand the existent risk analysis methodologies. This work is conducted with respect to the problem of danger identification, considering the context of the complex systems behavior and their interaction with the human operator. In software engineering, it is well known that Petri/high-level nets have attractive characteristics to be used in systems simulation and behavior prediction such as the natural graphical representation, and their well-defined semantic. They are well-suited for the description of complex situations with concurrency (interleaving and true concurrency depending on the underlying semantics), conflict and confusion. However, the absence of structuring capabilities has been one of the main criticisms raised against Petri nets/high-level nets. Thus, there have been many attempts to introduce structuring principles in nets of this kind [BCM88] [Kie89] [JR91]. The attractive characteristics of Petri/high-level nets have prompted researchers to enrich these formalisms with object-oriented features. CO-OPN (Concurrent Object-Oriented Petri Net) approach, brings together the power of both Petri/high-level nets and object-orientation techniques, it has been devised so as to offer an adequate framework for the specification and design of large scale concurrent system [BG91]. CO-OPN, as a powerful modeling tool, has been used in a limited way to simulate systems. This work aims to provide a CO-OPN extension to allow a more realistic systems' simulation. Actually, its simulator semantic uses to be a suitable approach for modeling near closed systems and software components, because they need to loose coupling with external world. But, when we model more realistic problems like industrial processes, where human interaction is a relevant event, this approach is not sufficient to catch all system activity attributes. Moreover, the CO-OPN interpretation process does not allow interaction with the object internal states. This work provides a new solution to overcome CO-OPN simulation limitations and a set of prototypes to assist dynamic systems simulations. Furthermore, this work has been conducted in a Risk Analysis (RA) context, a domain where computer-based simulations research are of utmost interest. Actually, classical approaches used to address complex workplace hazard in a limited way, using checklists or sequence models. Moreover, the use of single oriented methods, such as AEA (man-oriented), FMEA (machine oriented) or HAZOP (process oriented), is not satisfactory to overcome the increasing sophistication of industrial processes. The automation of a part of the analysis process as well as the multiple-oriented approach allowed by dynamic modeling may indeed enhance significantly the analysis completeness and reduce the time analyzing time. This work, based on Object Oriented Petri net formalism (CO-OPN), propose an alternative multi-oriented approach where existent methods limitations have been criticized to develop a dynamic model, MORM (Man-machine Occupational Risk Modeling). A real industrial system (metal wire making process) has been specified to implement the different approach steps (system identification, model application, system simulation, system analysis).

The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics problems are devised in two particularly arduous situations: fluid domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities of varying geometries are thoroughly investigated in the two following frameworks: transition with a free surface and confined turbulence. The physical system we consider is made of an incompressible Newtonian fluid filling a bounded, or partially bounded cavity. A series of shear-driven flows are easily generated by setting in motion some part of the container boundary. These driven-cavity flows are not only technologically important, they are of great scientific interest because they display almost all physical fluid phenomena that can possibly occur in incompressible flows, and this in the simplest geometrical settings. Thus corner eddies, secondary flows, longitudinal vortices, complex three-dimensional patterns, chaotic particle motions, nonuniqueness, transition, and turbulence all occur naturally and can be studied in the same geometry. This facilitates the comparison of results from experiments, analysis, and computation over the whole range of Reynolds numbers. The flows under consideration are part of a larger class of confined flows driven by linear or angular momentum gradients. This dissertation reports a detailed study of a novel numerical method developed for the simulation of an unsteady free-surface flow in three-space-dimensions. This method relies on a moving-grid technique to solve the Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian (ALE) kinematics and discretized by the spectral element method. A comprehensive analysis of the continuous and discretized formulations of the general problem in the ALE frame, with nonlinear, non-homogeneous and unsteady boundary conditions is presented. In this dissertation, we first consider in the internal turbulent flow of a fluid enclosed in a bounded cubical cavity driven by the constant translation of its lid. The solution of this flow relied on large-eddy simulations, which served to improve our physical understanding of this complex flow dynamics. Subsequently, a novel subgrid model based on approximate deconvolution methods coupled with a dynamic mixed scale model was devised. The large-eddy simulation of the lid-driven cubical cavity flow based on this novel subgrid model has shown improvements over traditional subgrid-viscosity type of models. Finally a new interpretation of approximate deconvolution models when used with implicit filtering as a way to approximate the projective grid filter was given. This led to the introduction of the grid filter models. Through the use of a newly-developed method of numerical simulation, in this dissertation we solve unsteady flows with a flat and moving free-surface in the transitional regime. These flows are the incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top surface and driven by the steady rotation of the bottom wall. New flow states are investigated based on the fully three-dimensional solution of the Navier-Stokes equations for these free-surface cylindrical swirling flows, without resorting to any symmetry properties unlike all other results available in the literature. To our knowledge, this study delivers the most general available results for this free-surface problem due to its original mathematical treatment. This second part of the dissertation is a basic research task directed at increasing our understanding of the influence of the presence of a free surface on the intricate transitional flow dynamics of shear-driven flows.