Sparse image approximation with application to flexible image coding
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We introduce a new semi-orthogonal complex wavelet basis of L-2(R-2). The basis functions are associated to the complex gradient-Laplace operator, which plays a central role in image processing. We define analytically a single-generator wavelet that is shi ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2008
This paper presents a framework for coarse scene geometry estimation, based on sparse representations of omnidirectional images with geometrical basis functions. We introduce a correlation model that relates sparse components in different views with local ...
In this paper, we propose the use of (adaptive) nonlinear approximation for dimensionality reduction. In particular, we propose a dimensionality reduction method for learning a parts based representation of signals using redundant dictionaries. A redundant ...
In the last decade we observed an increasing interaction between data compression and sparse signals approximations. Sparse approximations are desirable because they compact the energy of the signals in few elements and correspond to a structural simplific ...
Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This par ...
Typical tasks in signal processing may be done in simpler ways or more efficiently if the signals to analyze are represented in a proper way. This thesis deals with some algorithmic problems related to signal approximation, more precisely, in the novel fie ...
This paper shows introduces the use sensing dictionaries for p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We do both a worst case and average case recovery analyses of this ...
In this article is shown that with high probability the thresholding algorithm can recover signals that are sparse in a redundant dictionary as long as the {\it 2-Babel function} is growing slowly. This implies that it can succeed for sparsity levels up to ...
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
There has been an intense activity recently in the field of sparse approximations with redundant dictionaries, largely motivated by the practical performances of algorithms such as Matching Pursuit and Basis Pursuit. However, most of the theoretical result ...