Start making sense: The Chatty Web approach for global semantic agreements
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Linking facts across documents is a challenging task, as the language used to express the same information in a sentence can vary significantly, which complicates the task of multi-document summarization. Consequently, existing approaches heavily rely on h ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messagi ...
In the present information era, a huge amount of machine-readable data is available regarding scientific publications. Such unprecedented wealth of data offers the opportunity to investigate science itself as a complex interacting system by means of quanti ...
Aspect Term Extraction (ATE) detects opinionated aspect terms in sentences or text spans, with the end goal of performing aspect-based sentiment analysis. The small amount of available datasets for supervised ATE and the fact that they cover only a few dom ...
Data fusion is the process of resolving conflicting data from multiple data sources. As the data sources are inherently heterogenous, there is a need for an expert to resolve the conflicting data. Traditional approach requires the expert to resolve a consi ...
Different senses of source words must often be rendered by different words in the target language when performing machine translation (MT). Selecting the correct translation of polysemous words can be done based on the contexts of use. However, state-of-th ...
This paper introduces a query refinement method applied to questions asked by users to a system during a meeting or a conversation that they have with other users. To answer the questions, the proposed method leverages the local context of the conversation ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
This paper reports on an approach and experiments to automatically build a cross-lingual multi-word entity resource. Starting from a collection of millions of acronym/expansion pairs for 22 languages where expansion variants were grouped into monolingual c ...
European Language Resources Association (ELRA)2016