Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering ...
Over recent years, many large network datasets become available, giving rise to novel and valuable applications of data mining and machine learning techniques. These datasets include social networks, the structure of the Internet, and protein-interaction n ...
In this work, we consider the problem of estimating the coefficients of linear shift-invariant FIR graph filters. We assume hybrid node-varying graph filters where the network is decomposed into clusters of nodes and, within each cluster, all nodes have th ...
The problem of clustering in urban traffic networks has been mainly studied in static framework by considering traffic conditions at a given time. Nevertheless, it is important to underline that traffic is a strongly time-variant process and it needs to be ...
Today organizations are more than ever complex systems. They are large, ramified, distributed, and intertwined so that their organic structure seems like a tangle of activities. Day by day individuals contribute to keep these structures alive with their wo ...
We consider the problem of decentralized clustering and estimation over multitask networks, where agents infer and track different models of interest. The agents do not know beforehand which model is generating their own data. They also do not know which a ...
Clustering high-dimensional data often requires some form of dimensionality reduction, where clustered variables are separated from "noise-looking" variables. We cast this problem as finding a low-dimensional projection of the data which is well-clustered. ...
Many graph mining and network analysis problems rely on the availability of the full network over a set of nodes. But inferring a full network is sometimes non-trivial if the raw data is in the form of many small {\em patches} or subgraphs, of the true net ...
In this paper, we discuss the adaptation of our decentralized place recognition method described in [1] to fullimage descriptors. As we had shown, the key to making a scalable decentralized visual place recognition lies in exploting deterministic key assig ...
We provide an up-to-date view on the knowledge management system ScienceWISE (SW) and address issues related to the automatic assignment of articles to research topics. So far, SW has been proven to be an effective platform for managing large volumes of te ...