Multi-objective optimizationMulti-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives.
Heat exchangerA heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment.
Turbine-electric powertrainA turbine–electric transmission system includes a turboshaft gas turbine connected to an electrical generator, creating electricity that powers electric traction motors. No clutch is required. Turbine–electric transmissions are used to drive both gas turbine locomotives (rarely) and warships. A handful of experimental locomotives from the 1930s and 1940s used gas turbines as prime movers. These turbines were based on stationary practice, with single large reverse-flow combustors, heat exchangers and using low-cost heavy oil bunker fuel.
Mutation (genetic algorithm)Mutation is a genetic operator used to maintain genetic diversity of the chromosomes of a population of a genetic or, more generally, an evolutionary algorithm (EA). It is analogous to biological mutation. The classic example of a mutation operator of a binary coded genetic algorithm (GA) involves a probability that an arbitrary bit in a genetic sequence will be flipped from its original state. A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence.