Atmospheric stability effect on subgrid scale physics for large-eddy simulation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Determining the height of the planetary boundary layer (PBL) is of crucial importance as it is a key parameter in air-quality modelling and weather forecasting. Continuous remote sensing measurements allow to estimate this parameter based on temperature, h ...
A dynamic procedure is developed to compute the model coefficients in the recently introduced modulated gradient models for both momentum and scalar fluxes. The magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated using the local equ ...
Recent advances in boundary-layer meteorology are beginning to allow the study of atmospheric flow phenomena that have previously been poorly understood. In this dissertation, we study the effects of complex terrain and unsteady regimes on the atmospheric ...
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric thermal stability on wind-turbine wakes. The simulation results show that atmospheric stability has a significant effect on the spatial distri ...
A 1-D Canopy Interface Model (CIM) was developed in order to better simulate the effect of urban obstacles on the atmosphere in the boundary layer. The model solves the Navier-Stokes equations on a high-resolved gridded vertical column. The effect of the s ...
The atmospheric boundary layer (ABL) undergoes substantial changes in its structure and dynamics in the course of a day due to the transient nature of forcing factors such as the surface fluxes of heat and momentum. The non-stationary nature of the mean wi ...
As a simple alternative to the standard eddy-diffusivity closure, a nonlinear subgrid-scale (SGS) flux model is introduced and implemented in simulations of a neutral atmospheric boundary layer and a stable atmospheric boundary layer. The new model compute ...
With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of w ...
Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as sur ...
A dynamic procedure is developed to compute the model coefficients in the recently introduced modulated gradient models for both momentum and scalar fluxes. The magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated using the local equ ...