A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Predicting particle transport in turbulent flows has a plethora of applications, some of which are: the transport of atmospheric aerosols, the deposition of blood cells in the arteries of human bodies and the atomization of fuel droplets in combustion cham ...
This study assesses the ability of a sensitivity-based, span-wise homogeneous control velocity distributed at the surface of a circular cylinder to cut down the cost of reducing drag by more classical techniques, e.g., base bleed and lateral suction. At Re ...
Manning’s empirical formula in conjunction with Strickler’s scaling is widely used to predict the bulk velocity V from the hydraulic radius Rh, the roughness size r and the slope of the energy grade line S in uniform channel and pipe flows at high bulk Rey ...
Manning's empirical formula in conjunction with Strickler's scaling is widely used to predict the bulk velocity (V) from the hydraulic radius (Rh), the roughness size (r), and the slope of the energy grade line (S) in uniform channel flows at high bulk Rey ...
This work studies the nearshore hydrodynamics of a shallow turbulent flow entering a laterally unconfined quiescent ambient with a sloping bottom boundary. Examples of such flow are neutrally buoyant ebb tidal jets and hyperpycnal river plumes entering ope ...
Flows of gases and liquids interacting with solid objects are often turbulent within a thin boundary layer. As energy dissipation and momentum transfer are dominated by the boundary layer dynamics, many engineering applications can benefit from an improved ...
The trinity of so-called "canonical" wall-bounded turbulent flows, comprising the zero pressure gradient turbulent boundary layer, abbreviated ZPG TBL, turbulent pipe flow, and channel/duct flows has continued to receive intense attention as new and more r ...
Particle dispersion in a periodic channel is studied using the elliptic relaxation hybrid RANS/LES (ER-HRL) model. This approach employs a four-equation linear eddy viscosity (LEV) model while in Reynolds Averaged Navier-Stokes (RANS) mode near the wall, a ...
The applicability of two Reduced-Basis techniques to parametric laminar and turbulent incompressible fluid flow problems in nuclear engineering is studied in this work. The Reduced-Basis methods are used to generate Reduced-Order Models (ROMs) that can acc ...
We investigate theoretically and numerically the impact of the transition from laminar to turbulent flow on the propagation of a height contained hydraulic fracture (i.e. PKN geometry). We account for the inertial terms in the balance of momentum and expre ...