Flexible microchannels with integrated nanoporous membranes for filtration and separation of molecules and particles
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents the fabrication of a microchemical chip for the detection of fluorescence species in microfluidics. The microfluidic network is wet-etched in a Borofloat 33 (Pyrex) glass wafer and sealed by means of a second wafer. Unlike other similar ...
We present a new approach for contactless conductivity detection for microchip-based capillary electrophoresis (CE). The detector integrates easily with well-known microfabrication techniques for glass-based microfluidic devices. Platinum electrodes are st ...
A new, versatile architecture is presented for microfluidic devices made entirely from glass, for use with reagents which would prove highly corrosive for silicon. Chips consist of three layers of glass wafers bonded together by fusion bonding. On the insi ...
We describe the microfabrication and use of elastomeric and rigid two-level microfluidic networks (μFNs), made of poly(dimethylsiloxane) (PDMS) or Si, for patterning surfaces. The first level corresponds to microchannels and the second to via holes through ...
This paper describes the development of polyimide-based microfluidic devices. A layer transfer and lamination technique is used to fabricate flexible microfluidic channels in various shapes and with a wide range of dimensions. High bond strengths can be ac ...
Within the overall objective of developing a low dead volume technology for basic microfluidic valving, shunting and switching functionalities, the use of microbubbles is proposed. As a case study, a normally-closed, bubble-based microvalve design is prese ...