Test suiteIn software development, a test suite, less commonly known as a validation suite, is a collection of test cases that are intended to be used to test a software program to show that it has some specified set of behaviors. A test suite often contains detailed instructions or goals for each collection of test cases and information on the system configuration to be used during testing. A group of test cases may also contain prerequisite states or steps, and descriptions of the following tests.
Regression testingRegression testing (rarely, non-regression testing) is re-running functional and non-functional tests to ensure that previously developed and tested software still performs as expected after a change. If not, that would be called a regression. Changes that may require regression testing include bug fixes, software enhancements, changes, and even substitution of electronic components (hardware). As regression test suites tend to grow with each found defect, test automation is frequently involved.
Object (computer science)In computer science, an object can be a variable, a data structure, a function, or a method. As regions of memory, objects contain a value and are referenced by identifiers. In the object-oriented programming paradigm, an object can be a combination of variables, functions, and data structures; in particular in class-based variations of the paradigm, an object refers to a particular instance of a class. In the relational model of database management, an object can be a table or column, or an association between data and a database entity (such as relating a person's age to a specific person).
Entity–relationship modelAn entity–relationship model (or ER model) describes interrelated things of interest in a specific domain of knowledge. A basic ER model is composed of entity types (which classify the things of interest) and specifies relationships that can exist between entities (instances of those entity types). In software engineering, an ER model is commonly formed to represent things a business needs to remember in order to perform business processes.
SubtypingIn programming language theory, subtyping (also subtype polymorphism or inclusion polymorphism) is a form of type polymorphism in which a subtype is a datatype that is related to another datatype (the supertype) by some notion of substitutability, meaning that program elements, typically subroutines or functions, written to operate on elements of the supertype can also operate on elements of the subtype. If S is a subtype of T, the subtyping relation (written as S
Specification languageA specification language is a formal language in computer science used during systems analysis, requirements analysis, and systems design to describe a system at a much higher level than a programming language, which is used to produce the executable code for a system. Specification languages are generally not directly executed. They are meant to describe the what, not the how. Indeed, it is considered as an error if a requirement specification is cluttered with unnecessary implementation detail.
Specification (technical standard)A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard. There are different types of technical or engineering specifications (specs), and the term is used differently in different technical contexts. They often refer to particular documents, and/or particular information within them. The word specification is broadly defined as "to state explicitly or in detail" or "to be specific".
Statistical hypothesis testingA statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters. While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see .
Programming paradigmProgramming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms. Some paradigms are concerned mainly with implications for the execution model of the language, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are concerned mainly with the way that code is organized, such as grouping a code into units along with the state that is modified by the code.
Feature selectionFeature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Stylometry and DNA microarray analysis are two cases where feature selection is used. It should be distinguished from feature extraction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret by researchers/users, shorter training times, to avoid the curse of dimensionality, improve data's compatibility with a learning model class, encode inherent symmetries present in the input space.