Logical consequenceLogical consequence (also entailment) is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises.
Model theoryIn mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself.
Modeling languageA modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure Programing language. A modeling language can be graphical or textual. Graphical modeling languages use a diagram technique with named symbols that represent concepts and lines that connect the symbols and represent relationships and various other graphical notation to represent constraints.
Unified Modeling LanguageThe unified modeling language (UML) is a general-purpose visual modeling language that is intended to provide a standard way to visualize the design of a system. UML provides a standard notation for many types of diagrams which can be roughly divided into 3 main groups: behavior diagrams, interaction diagrams, and structure diagrams. The creation of UML was originally motivated by the desire to standardize the disparate notational systems and approaches to software design.
Conceptual modelA conceptual model is a representation of a system. It consists of concepts used to help people know, understand, or simulate a subject the model represents. In contrast, a physical model focuses on a physical object such as a toy model that may be assembled and made to work like the object it represents. The term may refer to models that are formed after a conceptualization or generalization process. Conceptual models are often abstractions of things in the real world, whether physical or social.
Object-modeling languageAn object-modeling language is a standardized set of symbols used to model a software system using an object-oriented framework. The symbols can be either informal or formal ranging from predefined graphical templates to formal object models defined by grammars and specifications. A modeling language is usually associated with a methodology for object-oriented development. The modeling language defines the elements of the model. E.g., that a model has classes, methods, object properties, etc.
Completeness (logic)In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete. The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true.
Systems modeling languageThe systems modeling language (SysML) is a general-purpose modeling language for systems engineering applications. It supports the specification, analysis, design, verification and validation of a broad range of systems and systems-of-systems. SysML was originally developed by an open source specification project, and includes an open source license for distribution and use. SysML is defined as an extension of a subset of the Unified Modeling Language (UML) using . The language's extensions were designed to support systems engineering activities.
Logical truthLogical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement which is not only true, but one which is true under all interpretations of its logical components (other than its logical constants). Thus, logical truths such as "if p, then p" can be considered tautologies.
Non-logical symbolIn logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and non-logical symbols (sometimes also called logical and non-logical constants). The non-logical symbols of a language of first-order logic consist of predicates and individual constants. These include symbols that, in an interpretation, may stand for individual constants, variables, functions, or predicates.