Unbiased parameter estimation of the Neyman-Scott model for rainfall simulation with related confidence interval
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Powerful mathematical tools have been developed for trading in stocks and bonds, but other markets that are equally important for the globalized world have to some extent been neglected. We decided to study the shipping market as an new area of development ...
in finite sample studies redescending M-estimators outperform bounded M-estimators (see for example, Andrews et al. [1972. Robust Estimates of Location. Princeton University Press, Princeton]). Even though redescenders arise naturally out of the maximum li ...
We study the problem of distributed estimation, where a set of nodes are required to collectively estimate some parameter of interest from their measurements. Diffusion algorithms have been shown to achieve good performance, increased robustness and are am ...
A variance analysis of the parameters of a plant, belonging to a class of multivariable systems, estimated in closed-loop operation is performed. More specifically, having in mind the control applications where it is not desirable to excite all external re ...
e consider an estimation network of many distributed sensors, where each senor takes a noisy measurement of some unknown parameter. Due to energy limitation, the network selects only a subset of sensors for data fusion as long as the distortion is tolerabl ...
Generalized Linear Models have become a commonly used tool of data analysis. Such models are used to fit regressions for univariate responses with normal, gamma, binomial or Poisson distribution. Maximum likelihood is generally applied as fitting method. I ...
The paper introduces an adaptive-window-spectrogram-based method to directly estimate the phase derivative from a single fringe pattern. The proposed method relies on estimating the phase derivative using spectrogram peak detection for a set of different w ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
In this paper we aim at controlling physically meaningful quantities with emphasis on environmental applications. This is carried out by an efficient numerical procedure combining the goal-oriented framework [R. Becker, R. Rannacher, An optimal control app ...